分析 观察已知式子,移项变形为an+1+2=q(an+2),从而得到an+2与an+1+2的关系,分an=-2和an≠-2讨论,当an≠-2时构造公比为q的等比数列{an+2},进而计算可得结论.
解答 解:∵an+1=qan+2q-2(q为常数,),
∴an+1+2=q(an+2),n=1,2,…,
下面对an是否为2进行讨论:
①当an=-2时,显然有a3,a4,a5∈{-5,-2,-1,7},此时a1=-2;
②当an≠-2时,{an+2}为等比数列,
又因为a3,a4,a5∈{-5,-2,-1,7},
所以a3+2,a4+2,a5+2∈{-3,0,1,9},
因为an≠-2,所以an+2≠0,
从而a3+2=1,a4+2=-3,a5+2=9,q=-3或a3+2=9,a4+2=-3,a5+2=1,q=-$\frac{1}{3}$
代入an+1=qan+2q-2,可得到a1=-$\frac{17}{9}$,或a1=79;
综上所述,a1=-2或-$\frac{17}{9}$或79,
故答案为:-2或-$\frac{17}{9}$或79.
点评 本题考查数列的递推式,对数列递推式能否成功变形是解答本题的关键所在,要分类讨论思想在本体重的应用,否则容易漏解,注意解题方法的积累,属于难题.
科目:高中数学 来源: 题型:选择题
A. | (-3,-1)∪(0,2) | B. | (-3,-2)∪(-1,0) | C. | (-2,-1)∪(0,3) | D. | (-3,-2)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x+3)2+(y+2)2=5 | B. | (x+3)2+(y+2)2=20 | C. | (x-3)2+(y-2)2=20 | D. | (x-3)2+(y-2)2=5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,+∞) | B. | [0,1] | C. | (0,1] | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | -1 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com