精英家教网 > 高中数学 > 题目详情

【题目】若圆的内接矩形的周长最大值为

(1)求圆O的方程;

(2)若过点的直线与圆O交于AB两点,如图所示,且直线的斜率,求的取值范围.

【答案】12

【解析】

(1) 设矩形在第一象限点为 (xy) (x> 0y> 0),则,表示出矩形的周长,利用基本不等式求其最大值,根据等号的成立条件可得,进而可得圆的方程;

(2) )设直线AB联立:,利用韦达定理求出,利用单调性求出的取值范围.

解:(1) 设矩形在第一象限点为 (xy) (x> 0y> 0),则

∴矩形周长

∵ 

当且仅当“=”

∴矩形周长的最大值为

r = 2,∴圆O的方程:

(2)设直线AB ,

联立:

消去y并整理得

同理:

异号,

       

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术·商功》中阐述:“斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则对该几何体描述:

①四个侧面都是直角三角形;

②最长的侧棱长为

③四个侧面中有三个侧面是全等的直角三角形;

④外接球的表面积为.

其中正确的个数为( )

A. 0B. 1

C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,且离心率.

1)求椭圆的方程;

2)直线的斜率为,直线与椭圆交于两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,当分别在轴,轴上滑动时,点的轨迹记为.

(1)求曲线的方程;

(2)设斜率为的直线交于两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若,求的取值范围;

(2)若的图像与轴围成的封闭图形面积为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.

(I)写出曲线与圆的极坐标方程;

(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m是实数,关于x的方程Ex2mx+2m+1)=0

1)若m2,求方程E在复数范围内的解;

2)若方程E有两个虚数根x1x2,且满足|x1x2|2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥PABCD的底面ABCD是矩形,PA⊥底面ABCD,点EF分别是棱PCPD的中点,则

①棱ABPD所在直线垂直;

②平面PBC与平面ABCD垂直;

③△PCD的面积大于△PAB的面积;

④直线AE与直线BF是异面直线.

以上结论正确的是________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且二面角,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案