分析 由正四面体的棱长,求出正四面体的高,设外接球半径为x,利用勾股定理求出x的值
解答 解:正四面体的棱长为:1,
底面三角形的高:$\frac{\sqrt{3}}{2}$,
棱锥的高为:$\sqrt{{1}^{2}-({\frac{\sqrt{3}}{3})}^{2}}$=$\frac{\sqrt{6}}{3}$,
设外接球半径为x,
x2=($\frac{\sqrt{6}}{3}$-x)2+($\frac{\sqrt{3}}{3}$)2,解得x=$\frac{\sqrt{6}}{4}$;
所以棱长为1的正四面体的外接球的半径$\frac{\sqrt{6}}{4}$.
故答案为:$\frac{\sqrt{6}}{4}$.
点评 本题考查球的内接多面体的知识,关键是明确球半径与棱锥的高的关系,考查计算能力,逻辑思维能力,是中档题.
科目:高中数学 来源: 题型:选择题
A. | 16 | B. | $\frac{16}{3}$ | C. | $\frac{256}{9}$ | D. | $\frac{128}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A∈l,A∈α,B∈l,B∈α⇒l?α | B. | A∈α,A∈β,B∈α,B∈β⇒α∩β=AB | ||
C. | l?α,A∈l⇒A∉α | D. | A∈l,l?α⇒A∈α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com