精英家教网 > 高中数学 > 题目详情
16.直线l1:2x-y+3=0,l2:4x+8y+3=0的位置关系为(  )
A.相交不垂直B.垂直C.平行不重合D.重合

分析 由条件求得这两条直线的斜率,再根据它们的斜率之积等于-1,得出结论.

解答 解:直线l1:2x-y+3=0的斜率为2,直线l2:4x+8y+3=0的斜率为-$\frac{1}{2}$,它们的斜率之积等于-1,
故直线l1:2x-y+3=0和直线l2:4x+8y+3=0垂直,
故选:B.

点评 本题主要考查直线的一般式方程,两条直线垂直的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,A(4,-1),∠B、∠C的平分线所在直线的方程分别为l1:x-y-1=0和l2:x+y+2=0,求BC边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.y=$\frac{2{x}^{2}+2x+5}{{x}^{2}+x+1}$的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设A、B两点是圆心都在直线x-y=0上的两个圆的交点,且A(-4,5).则点B的坐标为(5,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l1:x+3y-2=0,与直线x+2y+1=0.
(1)求两直线的交点P的坐标;
(2)求以点P为圆心,5为半径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\frac{1}{{2}^{x}+1}$的值域是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=log2[x2-2(2a-1)x+8],a∈R.
(1)若f(x)在(a,+∞)内为增函数,求实数a的取值范围;
(2)若关于x的方程f(x)=1-$lo{g}_{\frac{1}{2}}$(x+3)在[1,3]内有唯一实数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,⊙O是△ABC的外接圆,D是$\widehat{AC}$的中点,BD交AC于点E.
(1)求证:AD=$\sqrt{DE•DB}$;
(2)若CD=2$\sqrt{6}$,点O到AC的距离为1,求⊙O的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线l经过点A(t,0),且与曲线y=x2相切,若直线l的倾斜角为45°,则t=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案