A. | [-$\frac{11}{4}$,6] | B. | [-2,$\frac{25}{4}$] | C. | [-6,6] | D. | [-6,$\frac{25}{4}$] |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:画出可行域知当y=-3x+z与y=4-x2相切时,
z取最大值,对y=4-x2求导可得-2x=-3,
解得$x=\frac{3}{2}$,代入y=4-x2可得$y=\frac{7}{4}$,
所以${z_{max}}=3×\frac{3}{2}+\frac{7}{4}=\frac{25}{4}$,
当x=-2,y=0时,z取最小值-6,
即z=3x+y的取值范围是[-6,$\frac{25}{4}$],
故选D.
点评 本题主要考查线性规划的应用,根据直线和抛物线相切以及利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-2,0] | B. | [-2,1] | C. | [0,1] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow a$∥$\overrightarrow c$ | B. | $\overrightarrow b$∥$\overrightarrow c$ | C. | $\overrightarrow a$⊥$\overrightarrow c$ | D. | $\overrightarrow b$⊥$\overrightarrow c$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com