精英家教网 > 高中数学 > 题目详情

如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.
 
(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;
(2)当AP为多少时,“总噪音影响度”最小?

(1)y=(≤x≤)(2)AP=km

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,函数的图像与直线的相邻两个交点之间的距离为
(1)求的值;
(2)求函数上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间和极值;
(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义在(―1,1)上,对于任意的,有,且当时,
(1)验证函数是否满足这些条件;
(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(3)若,求方程的解。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求函数f(x)=x3-2x2-x+2的零点;
(2)已知函数f(x)=ln(x+1)-,试求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

画出下列函数的图象:
(1)y=x2-2x
(2)f(x)=
(3)y=x|2-x|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x∈[-3,2],求f(x)=+1的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lg(k∈R,且k>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在[10,+∞)上单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin ωx-4sin 2+2+a(ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为2.
(1)求函数f(x)的最小正周期;
(2)若f(x)在区间[6,16]上的最大值为4,求a的值.

查看答案和解析>>

同步练习册答案