精英家教网 > 高中数学 > 题目详情
如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=
2
,E、F、G分别A1B1、B1C1、BB1的中点.
(1)求直线D1B与平面ABCD所成角的大小.
(2)求证:AC平面EGF.
(1)证明:在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,
故直线D1B在底面ABCD内的射影为BD,故∠D1BD 为直线D1B与平面ABCD所成角的大小,
再由AB=1,D1D=
2
,可得tan∠D1BD=
D1D
BD
=
2
2
=1,∴∠D1BD=
π
4

(2)由于E、F、G分别A1B1、B1C1、BB1的中点,可得EF为三角形B1A1C1的中位线,
故有EF平行且等于
1
2
A1C1
再由A1C1和AC平行且相等,可得EFAC.
再由EF?平面EGF,而AC不再平面EGF内,故有AC平面EGF.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD,点M、N分别为侧棱PD、PC的中点
(1)求证:CD平面AMN;
(2)求证:AM⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-OABC中,PO⊥底面OABC,∠OCB=60°,∠AOC=∠ABC=90°,且OP=OC=BC=2.
(1)若D是PC的中点,求证:BD平面AOP;
(2)求二面角P-AB-O的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.
(I)求四棱锥P-ABCD的体积;
(Ⅱ)如果E是PA的中点,求证:PC平面BDE;
(Ⅲ)探究:不论点E在侧棱PA的任何位置,BD⊥CE是否都成立?若成立,证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,且∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.
(Ⅰ)求证:DE平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求二面角A-EB1-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列各图中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ平面PAO?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDE中,AE⊥平面ABC,BDAE,且AC=AB=BC=BD=2,AE=1,F在CD上(不含C,D两点)
(1)求多面体ABCDE的体积;
(2)若F为CD中点,求证:EF⊥面BCD;
(3)当
DF
FC
的值为多少时,能使AC平面EFB,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体A1C1-ABC中,四边形AA1C1C为平行四边形,且面AA1C1C⊥面ABCAA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线BC1与底面ABC所成角的正弦值.

查看答案和解析>>

同步练习册答案