分析 运用椭圆的参数方程设内接椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的矩形ABCD的顶点坐标,再由矩形的面积公式和二倍角的正弦公式,以及正弦函数的最值,即可得到所求最大值及对应的长与宽.
解答 解:设内接椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的矩形ABCD的顶点坐标为A(acosα,bsinα),(0<α<$\frac{π}{2}$)
B(acosα,-bsinα),C(-acosα,-bsinα),D(-acosα,bsinα),
则内接矩形的面积为S=2acosα•2bsinα=2absin2α,
当sin2α=1,即α=$\frac{π}{4}$时,矩形的面积最大,且为2ab.
即有矩形的长为$\sqrt{2}$a,宽为$\sqrt{2}$b.
故答案为:$\sqrt{2}$a,$\sqrt{2}$b.
点评 本题考查椭圆的参数方程的运用,考查正弦函数的值域的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | [1,2) | B. | [$\frac{4}{3}$,2] | C. | ($\frac{4}{3}$,2) | D. | [$\frac{4}{3}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-2<x<1} | B. | {x|0<x<1} | C. | {x|1<x<2} | D. | {x|0<x≤1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com