精英家教网 > 高中数学 > 题目详情

已知函数f(x)=a•ex+数学公式
(Ⅰ)当a=1时,求f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若对于任意的x∈(0,+∞),恒有f(x)≥0成立,求a的取值范围.

(Ⅰ)当a=1时,f(x)=ex+-4,∴f′(x)=ex-,∴f′(1)=e-2,
∵f(1)=e-2,
∴f(x)在点(1,f(1))处的切线方程为:(e-2)x-y=0.
(Ⅱ)∵f(x)=a•ex+
∴f′(x)=
令g(x)=ax2ex-(a+1),则g′(x)=ax(2+x)ex>0,
∴g(x)在(0,+∞)上单调递增,
∵g(0)=-(a+1)<0,当x→+∞时,g(x)>0,
∴存在x0∈(0,+∞),使g(x0)=0,且f(x)在(0,x0)上单调递减,f(x)在(x0,+∞)上单调递增,
∵g(x0)=-(a+1)=0,∴=a+1,即=
∵对于任意的x∈(0,+∞),恒有f(x)≥0成立,
∴f(x)min=f(x0)=+-2(a+1)≥0,∴-2(a+1)≥0,
,∴0,解得-≤x0≤1,
=a+1,∴=>1,
令h(x0)=,而h(0)=0,当x0→+∞时,h(x0)→+∞,
∴存在m∈(0,+∞),使h(m)=1,
∵h(x0)=在(0,+∞)上,∴x0>m,
∴m<x0≤1,
∵h(x0)=在(m,1]上∴h(m)<h(x0)≤h(1),
∴1<≤e,∴a≥
分析:(Ⅰ)当a=1时求出f(x),求导f′(x),切线斜率k=f′(1),f(1)=e-2,利用点斜式即可求得切线方程;
(Ⅱ)对于任意的x∈(0,+∞),恒有f(x)≥0成立,等价于f(x)min≥0,利用导数判断函数f(x)的单调性、极值,从而确定其最小值,其中为判定导数符号需要构造函数.
点评:本题考查曲线上某点处切线方程的求解及函数恒成立问题,考查学生综合运用知识分析解决问题的能力,正确理解导数的几何意义是关键,至于恒成立问题常常转化为函数最值处理,本题综合性强,难度大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案