精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为菱形, 底面 上的一点,PE=2EC, 的中点.

(1)证明: 平面

(2)证明: 平面.

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)设.利用三角形中位线性质得,再利用线面平行判定定理得平面;(2)先根据三角形相似得,再由底面.而由菱形性质得.因此由线面垂直判定定理得平面,即得.最后再由线面垂直判定定理得平面.

试题解析:(1)如图,连接,设.

∵底面为菱形,∴的中点,

的中点,所以

又因为平面 平面

平面.

(2)因为底面为菱形,所以.

底面 平面,所以.

因为,所以平面 平面,所以.

如图,连接.

由题可知, ,

,

从而.

所以,又

所以,由此知.

,所以平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥S﹣ABC中,△ABC是边长为2 的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.

(1)证明:AC⊥SB;
(2)求三棱锥B﹣CMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)分别求函数在区间上的极值

(2)求证:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明 ,则当n=k+1时左端应在n=k的基础上加上( )
A.(3k+2)
B.(3k+4)
C.(3k+2)+(3k+3)
D.(3k+2)+(3k+3)+(3k+4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数(0, ]上是减函数,在[ ,+∞)上是增函数.
(1)已知f(x)= ,g(x)=﹣x﹣2a,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.
(2)对于(1)中的函数f(x)和函数g(x),若对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=|log2x|的定义域为[ ,n](m,n为正整数),值域为[0,2],则满足条件的整数对(m,n)共有(
A.1个
B.7个
C.8个
D.16个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某工厂从工程设计B到试生产H的工序流程图,方框上方的数字为这项工序所用的天数,则从工程设计到结束试生产需要的最短时间为( )

A.22天
B.23天
C.28天
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数
(1)若 z 为纯虚数,求实数 a 的值;
(2)若 z 在复平面上对应的点在直线 x+2y+1=0 上,求实数 a 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(2,8),B(x1 , y1),C(x2 , y2)在抛物线 上,△ABC的重心与此抛物线的焦点F重合(如图)

(1)写出该抛物线的方程和焦点F的坐标;
(2)求线段BC中点M的坐标;
(3)求BC所在直线的方程.

查看答案和解析>>

同步练习册答案