精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)|2x4||x3|.

(1)解关于x的不等式f(x)<8

(2)对于正实数ab,函数g(x)f(x)3a4b只有一个零点,求的最小值.

【答案】1(31);(2.

【解析】

1)将函数解析式化成分段函数,用分类讨论的方法解不等式.

2)作出函数的大致图象,的零点,转化为函数的交点,由图可知,然后利用基本不等式求的最小值.

解:(1)由题意可得,

故当时,不等式可化为,解得,故此时不等式的解集为

时,不等式可化为,解得,故此时不等式的解集为

时,不等式可化为,解得,此时不等式无解,

综上,不等式的解集为.

(2)作出函数的大致图象及直线,如图.

由图可知,当只有一个零点时,

,

当且仅当时等号成立.

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若 ,求曲线 在点 处的切线方程;

(2)若 处取得极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体的底面为直角梯形,四边形为矩形,且分别为的中点.

1)求证:平面

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元2020年春,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了尽快遏制住病毒的传播,我国科研人员,在研究新型冠状病毒某种疫苗的过程中,利用小白鼠进行科学试验.为了研究小白鼠连续接种疫苗后出现症状的情况,决定对小白鼠进行做接种试验.该试验的设计为:①对参加试验的每只小白鼠每天接种一次;②连续接种三天为一个接种周期;③试验共进行3个周期.已知每只小白鼠接种后当天出现症状的概率均为,假设每次接种后当天是否出现症状与上次接种无关.

1)若某只小白鼠出现症状即对其终止试验,求一只小白鼠至多能参加一个接种周期试验的概率;

2)若某只小白鼠在一个接种周期内出现2次或3症状,则在这个接种周期结束后,对其终止试验.设一只小白鼠参加的接种周期为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数,为直线的倾斜角).以原点为极点,轴的非负半轴为极轴建立极坐标系,并在两个坐标系下取相同的长度单位.

1)当时,求直线的极坐标方程;

2)若曲线和直线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,是边的中点.平面平面.线段上的点满足.

1)证明:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把有相同数字相邻的数叫“兄弟数”,现从由一个1,一个2,两个3,两个4这六个数字组成的所有不同的六位数中随机抽取一个,则抽到“兄弟数”的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形平面是棱上的一点.

1)证明:平面平面

2)若的中点,,且二面角的正弦值为,求的值.

查看答案和解析>>

同步练习册答案