精英家教网 > 高中数学 > 题目详情

正三棱柱A1B­1C1―ABC中,点D是BC的中点,.设

   (1)求证:A1C∥平面AB1D;

   (2)求证:BC1⊥平面AB1D.

证明:(1)连结,设,连结

∵点的中点,点的中点,

DE.                                   

平面 DE 平面

∥平面.                          

(2)∵是正三角形, 点的中点,

       ∴.

       ∵平面平面,平面平面平面

平面.

平面

.                          

∵点中点,

RtRt

                                                        

⊥平面. 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网
如图(1)是一个水平放置的正三棱柱ABC-A1B1C1,D是棱BC的中点.正三棱柱的主视图如图(2).
(Ⅰ) 图(1)中垂直于平面BCC1B1的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)
(Ⅱ)求正三棱柱ABC-A1B1C1的体积;
(Ⅲ)证明:A1B∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长都为a的正三棱柱ABC-A1B1C1中,P是A1B的中点.
(Ⅰ)求PC与平面ABB1A1所成的角;
(Ⅱ)求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•北京)如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AB=a.
(Ⅰ)求证:直线A1D⊥B1C1
(Ⅱ)求点D到平面ACC1的距离;
(Ⅲ)判断A1B与平面ADC1的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:湖北省部分重点中学2010届高三第一次联考 题型:解答题

 

        如图所示,在正三棱柱ABC—A11C1中,BB1=BC=2,且M是BC的中点,点N在CC1上。

 
   (1)试确定点N的位置,使AB1⊥MN;

   (2)当AB1⊥MN时,求二面角M—AB1—N的大小。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案