精英家教网 > 高中数学 > 题目详情
1.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0),F1,F2是它的两个焦点,若椭圆上的点到焦点距离的最大值与最小值的差为2.
(1)求椭圆的标准方程;
(2)经过右焦点F2的直线l与椭圆相交于A、B两点,且$\overrightarrow{{F}_{2}A}$+2$\overrightarrow{{F}_{2}B}$=0,求直线l的方程.

分析 (1)由椭圆上的点到焦点距离的最大值与最小值的差为2,可得(a+c)-(a-c)=2,解得c.进而得出b2=a2-c2
(2)设直线l的方程为my=x-1.A(x1,y1),B(x2,y2).与椭圆方程联立化为(3m2+4)y2+6my-9=0.由$\overrightarrow{{F}_{2}A}$+2$\overrightarrow{{F}_{2}B}$=0,可得y1+2y2=0,与根与系数的关系联立解出即可.

解答 解:(1)∵椭圆上的点到焦点距离的最大值与最小值的差为2,
∴(a+c)-(a-c)=2,解得c=1.
∴b2=a2-c2=4-1=3.
∴椭圆的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(2)设直线l的方程为my=x-1.A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{my=x-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化为(3m2+4)y2+6my-9=0.
∴y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=$\frac{-9}{3{m}^{2}+4}$.(*)
∵$\overrightarrow{{F}_{2}A}$+2$\overrightarrow{{F}_{2}B}$=0,
∴y1+2y2=0,
与(*)联立可得:y2=$\frac{6m}{3{m}^{2}+4}$,
y1=$\frac{-12m}{3{m}^{2}+4}$,
∴$\frac{6m}{3{m}^{2}+4}$×$\frac{-12m}{3{m}^{2}+4}$=$\frac{-9}{3{m}^{2}+4}$,
化为m2=$\frac{4}{5}$,
解得m=$±\frac{2}{\sqrt{5}}$.
∴直线l的方程为:y=±$\frac{\sqrt{5}}{2}$(x-1).

点评 本题考查了椭圆的标准方程及其性质、“直线与椭圆相交问题、向量坐标运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知关于x的方程x2-2ax+2a2-3a+2=0有两个不等的实数根x1,x2,那么(x1-x22的取值范围是(  )
A.(0,+∞)B.[0,1]C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是奇函数,且当x≥0时,f(x)=x(1+x),则f(-2)=(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈[0,3],a≥2x-2,命题q:?x∈R,x2+4x+a=0,若命题“p∧q”是真命题,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列所给出的赋值语句中正确的是(  )
A.-5=xB.x=y=1C.y=-yD.x+y=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则函数f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=$\frac{{{x^2}+mx+m}}{x}$的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若f(x)=$\root{3}{2x+4}$,则f(2)=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:平面BDGH∥平面AEF;
(Ⅱ)求二面角H-BD-C的大小.

查看答案和解析>>

同步练习册答案