【题目】(1)集合,或,对于任意,定义,对任意,定义,记为集合的元素个数,求的值;
(2)在等差数列和等比数列中,,,是否存在正整数,使得数列的所有项都在数列中,若存在,求出所有的,若不存在,说明理由;
(3)已知当时,有,根据此信息,若对任意,都有,求的值.
【答案】(1),;(2)为正偶数;(3);
【解析】
(1)由题意得:集合表示方程解的集合,由于或,即可得到集合的元素个数;利用倒序相加法及,即可得到答案;
(2)假设存在,对分奇数和偶数两种情况进行讨论;
(3)利用类比推理和分类计数原理可得的值.
(1)由题意得:集合表示方程解的集合,
由于或,所以方程中有个,个,
从而可得到解的情况共有个,
所以.
令,
所以,
所以,
所以,即.
(2)当取偶数时,中所有项都是中的项.
由题意:均在数列中,当时,
,
说明数列的第项是数列中的第项.
当取奇数时,因为不是整数,所以数列的所有项都不在数列中.
综上所述:为正偶数.
(3)当时,有①
当时,②
又对任意,都有③
所以即为的系数,
可取①中、②中的1;或①中、②中的;或①中、②中的;
或①中的、②中的;
所以.
科目:高中数学 来源: 题型:
【题目】已知,函数且.
(1)求p,q的值以及函数的表达式,并写出的定义域D;
(2)设函数,A=,集合,当时,求实数k的取值范围;
(3)当时,设,数列的前n项和为,直线的斜率为,是否存在实数,使对一切恒成立,若存在,分别求出实数的取值范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,P是圆x2+y2=4上的动点,P点在x轴上的射影是D,点M满足.
(Ⅰ)求动点M的轨迹C的方程
(Ⅱ)设A、B是轨迹C上的不同两点,点E(﹣4,0),且满足,若λ∈[,1),求直线AB的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为 曲线的极坐标方程为,与交于点.
(1)写出曲线的普通方程及直线的直角坐标方程,并求;
(2)设为曲线上的动点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线C交于两点.
(1)求直线的普通方程和曲线C的直角坐标方程;
(2)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四面体中,,且两两互相垂直,点是的中心.
(1)求二面角的大小(用反三角函数表示);
(2)过作,垂足为,求绕直线旋转一周所形成的几何体的体积;
(3)将绕直线旋转一周,则在旋转过程中,直线与直线所成角记为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,且它的焦距是短轴长的倍.
(1)求椭圆的方程.
(2)若,是椭圆上的两个动点(,两点不关于轴对称),为坐标原点,,的斜率分别为,,问是否存在非零常数,使当时,的面积为定值?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com