精英家教网 > 高中数学 > 题目详情
3.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,给出下列四个函数:
①f(x)=sin($\frac{π}{2}$x)
②f(x)=|2x-1|
③f(x)=2x2-1
④f(x)=log2(2x-2).
其中存在唯一“可等域区间”的“可等域函数”的序号为②③.

分析 根据“可等域区间”的定义分别进行判断即可得到结论.

解答 解:①:函数f(x)=sin($\frac{π}{2}$x)的周期是4,正弦函数的性质我们易得,A=[0,1]为函数的一个“可等域区间”,同时当A=[-1,0]时也是函数的一个“可等域区间”,∴不满足唯一性.
②A=[0,1]为函数f(x)=|2x-1|的“可等域区间”,
当x∈[0,1]时,f(x)=2x-1,函数单调递增,f(0)=1-1=0,f(1)=2-1=1满足条件,
∴m,n取值唯一.故满足条件.
③当A=[-1,1]时,f(x)∈[-1,1],满足条件,且由二次函数的图象可知,满足条件的集合只有A=[-1,1]一个.
④∵f(x)=log2(2x-2)单调递增,且函数的定义域为(1,+∞),
若存在“可等域区间”,则满足$\left\{\begin{array}{l}{lo{g}_{2}(2m-2)=m}\\{lo{g}_{2}(2n-2)=n}\end{array}\right.$,即$\left\{\begin{array}{l}{2m-2={2}^{m}}\\{2n-2={2}^{n}}\end{array}\right.$,
∴m,n是方程2x=2x-2的两个根,
作出函数设f(x)=2x和y=2x-2的图象,
当x>1时,两个函数没有交点,
∴f(x)=2x-2x+2=0不可能存在两个解,
故f(x)=log2(2x-2)不存在“可等域区间”.
故答案为:②③

点评 本题主要考查与函数有关的新定义问题,根据“可等域区间”的定义,建立条件关系是解决本题的关键,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知a,b是实数,函数f(x)=x|x-a|+b.
(1)当a=2时,求函数f(x)的单调区间;
(2)若存在a∈[-3,5],使得函数f(x)在[-4,5]上恒有三个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,已知点P是反比例函数y=$\frac{2\sqrt{3}}{x}$(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的$\frac{1}{2}$?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|2x>1},B={ x|x<1},则A∩B?(  )
A.{ x|0<x<1}B.{ x|x>?0}C.{ x|x>1}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一几何体的三视图如图所示,则该几何体的各个面中面积最大的面的面积为(  )
A.4B.5C.$\frac{9}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$\overrightarrow{e_1}$,$\overrightarrow{e_2}$,$\overrightarrow{e_3}$为单位向量,且$\overrightarrow{e_3}=\frac{1}{2}\overrightarrow{e_1}+k\overrightarrow{e_2}$,(k>0),若以向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$为两边的三角形的面积为$\frac{1}{2}$,则k的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={x|$\sqrt{x}$>2},B={x|1<x<5},则A∩B等于(  )
A.(1,4)B.(4,5)C.(1,5)D.(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xoy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为pcos(θ-$\frac{π}{3}$)=-1,曲线C2的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$,(其中α为参数,α∈[0,2π)),点A,B分别在曲线C1,C2上.
(1)求曲线C1的直角坐标方程和曲线C2的普通方程;
(2)试求两曲线上点A,B距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=ax2+x-lnx.
(1)若a=1,求函数y=f(x)的极值;
(2)若y=f(x)存在单调递增区间,求实数a的取值范围.

查看答案和解析>>

同步练习册答案