精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{cn}对任意的n∈N*,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$成立,求数列$\{\frac{1}{{{{log}_3}{c_{2n}}.{{log}_3}{c_{2n+2}}}}\}$的前n项和Sn

分析 (1)利用${{b}_{3}}^{2}$=b2•b4代入可知(1+4d)2=(1+d)(1+13d),计算得d=2,进而可知q=$\frac{{b}_{3}}{{b}_{2}}$=3,计算即得结论;
(2)通过$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$与$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n-1}}{{b}_{n-1}}$=an(n≥2)作差可知cn=2•3n-1(n≥2),裂项可知$\frac{1}{lo{g}_{3}{c}_{2n}•lo{g}_{3}{c}_{2n+2}}$=$\frac{1}{2}$($\frac{1}{lo{g}_{3}2+2n-1}$-$\frac{1}{lo{g}_{3}2+2n+1}$),进而并项相加即得结论.

解答 解:(1)依题意,b2=a2=1+d,b3=a5=1+4d,b4=a14=1+13d,
∵数列{bn}为等比数列,
∴${{b}_{3}}^{2}$=b2•b4,即(1+4d)2=(1+d)(1+13d),
解得:d=2或d=0(舍),
则an=1+2(n-1)=2n-1;
又∵q=$\frac{{b}_{3}}{{b}_{2}}$=$\frac{{a}_{5}}{{a}_{2}}$=$\frac{2×5-1}{2×2-1}$=3,
∴bn=${b}_{2}•{q}^{n-2}$=3•3n-2=3n-1
(2)∵$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$,
∴$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n-1}}{{b}_{n-1}}$=an(n≥2),
两式相减得:$\frac{{c}_{n}}{{b}_{n}}$=an+1-an
即cn=(an+1-an)•bn=2•3n-1(n≥2),
∴$\frac{1}{lo{g}_{3}{c}_{2n}•lo{g}_{3}{c}_{2n+2}}$=$\frac{1}{lo{g}_{3}(2•{3}^{2n-1})}$•$\frac{1}{lo{g}_{3}(2•{3}^{2n+1})}$=$\frac{1}{2}$($\frac{1}{lo{g}_{3}2+2n-1}$-$\frac{1}{lo{g}_{3}2+2n+1}$),
∴Sn=$\frac{1}{2}$($\frac{1}{lo{g}_{3}2+1}$-$\frac{1}{lo{g}_{3}2+3}$+…+$\frac{1}{lo{g}_{3}2+2n-1}$-$\frac{1}{lo{g}_{3}2+2n+1}$)
=$\frac{1}{2}$($\frac{1}{lo{g}_{3}2+1}$-$\frac{1}{lo{g}_{3}2+2n+1}$).

点评 本题考查数列的通项及前n项和,考查运算求解能力,利用裂项相消法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.根据下列条件,求直线方程:
(1)过点(2,1)和点(0,-3);
(2)过点(0,5),且在两坐标轴上的截距之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图E,F在边长分别为2和1的矩形边DC与BC上,若$\overrightarrow{AE}•\overrightarrow{AF}$=6,则$\overrightarrow{BE}•(\overrightarrow{DF}+\overrightarrow{AF})$等于(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax3-3x2+4,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围为a<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合A={1,2},且A∪B={1,2,3},写出B的一个集合:{3}(或{1,3},{2,3},{1,2,3}),,所有可能的集合B共有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x,x∈R.当m取何值时方程|f(x)-2|=m有一个解?两个解?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数$f(x)=\frac{{|{2-x}|}}{{\sqrt{x+2}}}-{(x-\frac{3}{2})^0}$的定义域是(  )
A.$(-2,\frac{3}{2})∪(\frac{3}{2},+∞)$B.$(-2,\frac{3}{2})$C.$(\frac{3}{2},+∞)$D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在三棱锥P一ABC中,PA⊥平面ABC,△ABC为边长为2的正三角形,PA=$\sqrt{3}$,则AP与平面PBC所成的角为(  )
A.45°B.60°C.75°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知全集U={1,2,3,4,5,6},①A⊆U;②若x∈A,则2x∉A;③若x∈∁UA,则2x∉∁UA,则同时满足条件①②③的集合A的个数为8.

查看答案和解析>>

同步练习册答案