【题目】已知函数(是自然对数的底数)
(1)若直线为曲线的一条切线,求实数的值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)设,若在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数的取值范围.
【答案】(1);(2);(3)或.
【解析】试题分析:
(1)设切点,根据导数的几何意义求解.(2)分单调递增合递减两种情况考虑,将问题转化为导函数大(小)于等于零在恒成立求解可得的范围.(3)由题意得,令,然后对实数的取值进行分类讨论,并根据的符号去掉绝对值,再结合导数得到函数的单调性,进而得到函数有极值时实数的取值范围.
试题解析:
(1)设切点,则(*)
又
,代入(*)得
.
(2)设,
当单调递增时,
则在上恒成立,
∴ 在上恒成立,
又
解得.
当单调递减时,
则在上恒成立,
∴在上恒成立,
综上单调时的取值范围为.
(3),
令则,
当时, , 单调递增,
∴,即.
1)当,即时,
∴,
则单调递增,
在上无极值点.
2)当即时,
∴
I)当,即时,
在递增,
,
在上递增,
在上无极值点.
II)当时,由
在递减, 递增,
又
使得
在上单调递减,在上单调递增,
在上有一个极小值点.
3)当时, ,
在上单调递减,在上单调递增,
又,
在上恒成立,
无极值点.
4)当时,
在递增,
使得,
当时, 当时, ,
,
,
令,
下面证明,即证,
又
,
即证,所以结论成立,即,
在递减, 递增,
为的极小值.
综上当或时, 在上有极值点.
科目:高中数学 来源: 题型:
【题目】已知抛物线的标准方程为, 为抛物线上一动点, ()为其对称轴上一点,直线与抛物线的另一个交点为.当为抛物线的焦点且直线与其对称轴垂直时, 的面积为18.
(1)求抛物线的标准方程;
(2)记,若值与点位置无关,则称此时的点为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长.该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:
年份 | |||||
储蓄存款 (千亿元) |
为便于计算,工作人员将上表的数据进行了处理(令, ),得到下表:
时间 | |||||
储蓄存款 |
(Ⅰ)求关于的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出关于的回归方程;
(Ⅲ)用所求回归方程预测到年年底,该地储蓄存款额可达多少?
附:线性回归方程,其中, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: ()的焦点是椭圆: ()的右焦点,且两曲线有公共点
(1)求椭圆的方程;
(2)椭圆的左、右顶点分别为, ,若过点且斜率不为零的直线与椭圆交于, 两点,已知直线与相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,已知直线: (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的极坐标为,直线与曲线的交点为, ,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com