【题目】已知如下四个命题:①在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于,表示回归效果越好;②在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于;④对分类变量与,对它们的随机变量的观测值来说,越小,则“与有关系”的把握程度越大.其中正确命题的序号是__________.
科目:高中数学 来源: 题型:
【题目】选修4—4:极坐标与参数方程
在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(Ⅰ)求曲线和直线的普通方程;
(Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了加强学生数学核心素养的培养,锻炼学生自主探究学习的能力,他们以教材第97页B组第3题的函数为基本素材,研究该函数的相关性质,取得部分研究成果如下:
①同学甲发现:函数是偶函数;
②同学乙发现:对于任意的都有;
③同学丙发现:对于任意的,都有;
④同学丁发现:对于函数定义域中任意的两个不同实数,总满足.
其中所有正确研究成果的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.
(1)求甲队分别以,获胜的概率;
(2)设表示决出冠军时比赛的场数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点是圆心为半径为的半圆弧上从点数起的第一个三等分点,点是圆心为半径为的半圆弧的中点,、分别是两个半圆的直径,,直线与两个半圆所在的平面均垂直,直线、共面.
(1)求三棱锥的体积;
(2)求直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,并按下表折扣分别累计计算:
可以享受折扣优惠金额 | 折扣率 |
不超过500元的部分 | |
超过500元的部分 |
若某顾客在此商场获得的折扣金额为50元,则此人购物实际所付金额为
A.1500元B.1550元C.1750元D.1800元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com