【题目】已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正实数),满足f(0)=g(0);
函数F(x)=f(x)+g(x)+b定义域为D.
(1)求a的值;
(2)若存在x0∈D,使F(x0)=x0成立,求实数b的取值范围;
(3)若n为正整数,证明:<4.
(参考数据:lg3=0.3010, =0.1342,=0.0281, =0.0038)
【答案】(1) ;(2) ;(3)见解析.
【解析】
(1)由f(0)=g(0),解方程可得a=1;
(2)求得f(x)+g(x)+b的解析式,由条件讨论x≥1,x<1时,分离参数,解不等式可得b的范围;(3)设,由n为正整数,化简G(n),讨论G(n)的单调性,即可得证.
(1)∵f(0)=g(0),即|a|=1,又a>0,∴a=1.
(2)由(1)知,f(x)+g(x)+b=.
当x≥1时,有x2+3x+b=x,即b=﹣x2﹣2x=﹣(x+1)2+1.
∵x≥1,∴﹣(x+1)2+1≤﹣3,此时b≤﹣3.
当x<1时,有x2+x+2+b=x,即b=﹣x2﹣2
∵x<1,∴﹣x2﹣2≤﹣2,此时b≤﹣2.
故要使得f(x)+g(x)+b在其定义域内存在不动点,
则实数b的取值范围应(﹣∞,﹣2].
(3)证明:设,
由为正整数, 所以,
所以,
当时,,即,
即,所以,
由于n为正整数,因此当1≤n≤3时,G(n)单调递增;
当n≥4时,G(n)单调递减.(13分)
∴G(n)的最大值是max{G(3),G(4)}.
又,,
所以.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)若 =2 ,求二面角E﹣AM﹣D的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数在同一个周期内,当时y取最大值1,当时,y取最小值﹣1.
(1)求函数的解析式y=f(x);
(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?
(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年6月22日“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15—75岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: .把年龄落在区间自和 内的人分别称为“青少年”和“中老年”.
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;
(2)根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;
临界值表:
附:参考公式
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f( )=﹣ x3+ x2﹣m,g(x)=﹣ x3+mx2+(a+1)x+2xcosx﹣m.
(1)若曲线y=f(x)仅在两个不同的点A(x1 , f(x1)),B(x1 , f(x2))处的切线都经过点(2,t),求证:t=3m﹣8,或t=﹣ m3+ m2﹣m.
(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列函数既是奇函数,又在[﹣1,1]上单调递增是( )
A.f(x)=|sinx|
B.f(x)=ln
C.f(x)= (ex﹣e﹣x)
D.f(x)=ln( ﹣x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一户农村居民家庭实施10年收入计划,从第 1年至7年他家的纯收入y(单位:千元)的数据如下表:
(1)将题中表填写完整,并求关于的线性回归方程;
(2)利用(1)中的回归方程,分析1年至7年该农户家庭人均纯收入的变化情况,并预测该农户第8年的家庭人均纯收入是多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com