【题目】已知函数f(x)=|2x﹣a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.
【答案】
(1)解:当a=2时,f(x)=|2x﹣2|+2,
∵f(x)≤6,∴|2x﹣2|+2≤6,
|2x﹣2|≤4,|x﹣1|≤2,
∴﹣2≤x﹣1≤2,
解得﹣1≤x≤3,
∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}
(2)解:∵g(x)=|2x﹣1|,
∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,
2|x﹣ |+2|x﹣ |+a≥3,
|x﹣ |+|x﹣ |≥ ,
当a≥3时,成立,
当a<3时,|x﹣ |+|x﹣ |≥ |a﹣1|≥ >0,
∴(a﹣1)2≥(3﹣a)2,
解得2≤a<3,
∴a的取值范围是[2,+∞)
【解析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣ |+|x﹣ |≥ ,由此能求出a的取值范围.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】下列不等式中正确的是( )
A.sin π>sin π
B.tan π>tan(﹣ )
C.sin(﹣ )>sin(﹣ )
D.cos(﹣ π)>cos(﹣ π)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的方程为(x﹣1)2+(y﹣2)2=4. (Ⅰ)求过点M(3,1)的圆C的切线方程;
(Ⅱ)判断直线ax﹣y+3=0与圆C的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(Ⅰ)求y关于t的回归方程 = t+ .
(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程 = t+ 中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,则cosθ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将A,B两枚骰子各抛掷一次,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)两枚骰子点数之和是3的倍数的结果有多少种?
(3)两枚骰子点数之和是3的倍数的概率为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com