精英家教网 > 高中数学 > 题目详情

【题目】4位同学在同一天的上午、下午参加身高与体重立定跳远肺活量握力台阶五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测握力,下午不测台阶,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )

A.264B.72C.266D.274

【答案】A

【解析】

先安排 位同学参加上午的身高与体重立定跳远肺活量台阶测试,共有 种不同安排方式;接下来安排下午的身高与体重立定跳远肺活量握力测试,假设ABC同学上午分别安排的是身高与体重立定跳远肺活量测试,若D同学选择握力测试,安排ABC同学分别交叉测试,有 种;若D同学选择身高与体重立定跳远肺活量测试中的 种,有 种方式,安排ABC同学进行测试有 种;根据计数原理共有安排方式的种数为 故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两名射箭选手最近100次射箭所得环数如下表所示.

甲选手100次射箭所得环数

环数

7

8

9

10

次数

15

24

36

25

乙选手100次射箭所得环数

环数

7

8

9

10

次数

10

20

40

30

以甲、乙两名射箭选手这100次射箭所得环数的频率作为概率,假设这两人的射箭结果相互独立.

1)若甲、乙各射箭一次,所得环数分别为XY,分别求XY的分布列并比较的大小;

2)甲、乙相约进行一次射箭比赛,各射3箭,累计所得环数多者获胜.若乙前两次射箭均得10环,且甲第一次射箭所得环数为9,求甲最终获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,是以PF为底边的等腰三角形,PA平行于x轴,点,且点P在直线上运动.记点A的轨迹为C.

1)求C的方程.

2)直线AFC的另一个交点为B,等腰底边的中线与直线的交点为Q,试问的面积是否存在最小值?若存在,求出该值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,令能取到的不同的整数值的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的焦距为2,椭圆的左右焦点分别为,过右焦点轴的垂线交椭圆于两点,.

1)求椭圆的方程;

2)过右焦点作直线交椭圆于两点,若△的内切圆的面积为,求△的面积;

3)已知为圆上一点(轴右侧),过作圆的切线交椭圆两点,试问△的周长是否为一定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在区间上单调递增,求实数a的取值范围;

2)若,函数处取得极小值,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当a=1时,若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个简单图中两两相邻的t个项点称为一个团,与其余每个顶点均相邻的顶点称为中心点.给定整数及满足的整数k,一个n阶简单图G中不存在k+1团,其全部k团记为.

(1)证明:

(2)若在图G中再添加一条边就存在k+1团,求图G的中心点个数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强学生体质,合肥一中组织体育社团,某班级有4人积极报名参加篮球和足球社团,每人只能从两个社团中选择其中一个社团,大家约定:每个人通过掷一枚质地均匀的骰子决定自己参加哪个社团,掷出点数为56的人参加篮球社团,掷出点数小于5的人参加足球社团.

1)求这4人中恰有1人参加篮球社团的概率;

2)用分别表示这4人中参加篮球社团和足球社团的人数,记随机变量X之差的绝对值,求随机变量X的分布列与数学期望

查看答案和解析>>

同步练习册答案