精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),直线y=x+
6
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1、F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2
(1)求椭圆C的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点A、B,且线段AB的垂直平分线l′过定点Q(
1
6
,0),求实数k的取值范围.
分析:(1)利用△F1PF2的重心为G,内心为I,结合三角形的面积公式,直线y=x+
6
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,求出几何量,即可求出椭圆的方程;
(2)直线方程代入椭圆方程,确定线段AB的中点R的坐标,利用线段AB的垂直平分线l′过定点Q(
1
6
,0),可得不等式,从而可求实数k的取值范围.
解答:解:(1)设P(x0,y0)(y0≠0),则G(
x0
3
y0
3

设I(xI,yI),则∵IG∥F1F2,∴yI=
y0
3

∵|F1F2|=2c,∴SF1PF2=
1
2
|F1F2||y0|=
1
2
(|PF1|+|PF2|+|F1F2|)•
y0
3

∴2c•3=2a+2c
e=
c
a
=
1
2

∵直线y=x+
6
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切
b=
6
2

∴b=
3

∴a=2
∴椭圆的方程为
x2
4
+
y2
3
=1

(2)设A(x1,y1),B(x2,y2),则
直线方程代入椭圆方程可得(3+4k2)x2+8kmx+4m2-12=0,
由△>0,可得m2<4k2+3
∵x1+x2=-
8km
3+4k2

∴y1+y2=
6m
3+4k2

∴线段AB的中点R的坐标为(-
4km
3+4k2
3m
3+4k2

∵线段AB的垂直平分线l′的方程为y=-
1
k
(x-
1
6
)
,R在直线l′上,
3m
3+4k2
=-
1
k
(-
4km
3+4k2
-
1
6
)

∴m=-
1
6k
(4k2+3)

[-
1
6k
(4k2+3)]2<4k2+3

k2
3
32

k>
6
8
k<-
6
8
点评:本题考查椭圆方程,考查直线与椭圆,直线与圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案