精英家教网 > 高中数学 > 题目详情

【题目】如图,是由两个全等的菱形组成的空间图形,,∠BAF=∠ECD60°.

1)求证:

2)如果二面角BEFD的平面角为60°,求直线与平面所成角的正弦值.

【答案】(1)见解析;(2)

【解析】

1)取的中点,连接.利用菱形的性质、等边三角形的性质分别证得,由此证得平面,进而求得,根据空间角的概念,证得.

2)根据(1)得到就是二面角的平面角,即,由此求得的长.利用等体积法计算出到平面的距离,根据线面角的正弦值的计算公式,计算出直线与平面所成角的正弦值.

1)取的中点,连接.在菱形中,

,∴是正三角形,∴

同理在菱形,可证,∴平面,∴

又∵,∴.

2)由(1)知,就是二面角的平面角,即

,所以是正三角形,故有

如图,取的中点,连接,则,又由(1)得

所以,平面,且,又,在直角中,

所以,设到平面的距离为,则

,所以

故直线与平面所成角正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面.

(Ⅰ)求证:平面

(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形ABCD中,ABCDABAD,且ABADCD1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,MED的中点,如图②.

(1)求证:AM∥平面BEC

(2)求点D到平面BEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱中,侧棱与底面垂直,且分别是的中点,点在线段上,且.

1)求证:不论取何值,总有

2)当时,求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率为,直线恒过的一个焦点.

1)求的标准方程;

2)设为坐标原点,四边形的顶点均在上,交于,且,若直线的倾斜角的余弦值为,求直线轴交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.

(1)的长;

(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象如图所示,令,则下列关于函数的说法中正确的是(

A. 函数图象的对称轴方程为

B. 函数的最大值为2

C. 函数的图象上存在点,使得在点处的切线与直线平行

D. 若函数的两个不同零点分别为,则最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒肺炎疫情爆发以来,疫情防控牵挂着所有人的心. 某市积极响应上级部门的号召,通过沿街电子屏、微信公众号等各种渠道对此战“疫”进行了持续、深入的悬窗,帮助全体市民深入了解新冠状病毒,增强战胜疫情的信心. 为了检验大家对新冠状病毒及防控知识的了解程度,该市推出了相关的知识问卷,随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制频率分布直方图如图所示,把年龄落在区间内的人分别称为“青少年人”和“中老年人”. 经统计“青少年人”和“中老年人”的人数比为19:21. 其中“青少年人”中有40人对防控的相关知识了解全面,“中老年人”中对防控的相关知识了解全面和不够全面的人数之比是2:1.

1)求图中的值;

2)现采取分层抽样在中随机抽取8名市民,从8人中任选2人,求2人中至少有1人是“中老年人”的概率是多少?

3)根据已知条件,完成下面的2×2列联表,并根据统计结果判断:能够有99.9%的把握认为“中老年人”比“青少年人”更加了解防控的相关知识?

了解全面

了解不全面

合计

青少年人

中老年人

合计

附表及公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案