精英家教网 > 高中数学 > 题目详情

已知在四棱锥中,底面是矩形,且平面分别是线段的中点.

(1)证明:
(2)判断并说明上是否存在点,使得∥平面

(1)证明:见解析;(2)满足的点即为所求.

解析试题分析:(1)通过,证明得到再利用,∴,推出“线线垂直”.
(2)注意运用已有的“平行关系”:过点于点,则∥平面
且有,再过点于点,得到∥平面
根据平面∥平面推出∥平面
从而作出结论:满足的点即为所求.
试题解析:证明:连接,则

,∴               3分
,∴,又
  6分
(2)过点于点,则∥平面
且有     8分
再过点于点,则∥平面
∴ 平面∥平面                 10分
∴ ∥平面
从而满足的点即为所求.     12分
考点:平行关系,垂直关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面
(Ⅰ)若分别为中点,求证:∥平面
(Ⅱ)求证:
(Ⅲ)若,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱台中,底面是平行四边形,平面.

(1)证明:平面
(2)证明:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面内,,AB=2BC=2,P为平面外一个动点,且PC=

(1)问当PA的长为多少时,
(2)当的面积取得最大值时,求直线PC与平面PAB所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,,,,点中点.将沿折起,使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥,底面是矩形,平面底面平面,且点上.

(1)求证:
(2)求三棱锥的体积;
(3)设点在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 已知四边形ABCD和BCEG均为直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证: ECCD
(2)求证:AG∥平面BDE
(3)求:几何体EG-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知.

(1)求证:OD//平面VBC;
(2)求证:AC⊥平面VOD;
(3)求棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

画一个正方体ABCDA1B1C1D1,再画出平面ACD1与平面BDC1的交线,并且说明理由.

查看答案和解析>>

同步练习册答案