精英家教网 > 高中数学 > 题目详情
已知椭圆=1(a>b>0)与双曲线=1有相同的焦点,则椭圆的离心率为
A.B.C.D.
D
本题考查椭圆和双曲线的性质
设椭圆与双曲线的公共焦点为.
对于椭圆;对于双曲线
于是有,所以有
在椭圆中有,则,即,所以
所以
即椭圆的离记率为
故正确答案为D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

的焦点为顶点,顶点为焦点的椭圆方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)为椭圆的左右顶点,直线轴交于点,点是椭圆上异于的动点,直线分别交直线两点.证明:当点在椭圆上运动时,恒为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆经过点(p,q),离心率其中p,q分别表示标准正态分布的期望值与标准差。

(1)求椭圆C的方程;
(2)设直线与椭圆C交于A,B两点,点A关于x轴的对称点为。①试建立的面积关于m的函数关系;②莆田十中高三(1)班数学兴趣小组通过试验操作初步推断:“当m变化时,直线与x轴交于一个定点”。你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C:(a>b>0)的离心率为,其左、右焦点分别是F1、F2,点P是坐标平面内的一点,且|OP|=·(点O为坐标原点).
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使
λ,λ∈(0,2)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8
(1)求椭圆C的标准方程;
(2)已知圆O:,直线. 求当点在椭圆C上运动时,直线 被圆O所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为 ___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.       已知定圆圆心为A;动圆M过点且与圆A相切,圆心M 的坐标为,它的轨迹记为C。
(1)求曲线C的方程;
(2)过一点N(1,0)作两条互相垂直的直线与曲线C分别交于点P和Q,试问这两条直线能否使得向量互相垂直?若存在,求出点P,Q的横坐标,若不存在,请说明理由。

查看答案和解析>>

同步练习册答案