精英家教网 > 高中数学 > 题目详情

【题目】孔子曰:温故而知新.数学学科的学习也是如此.为了调查数学成绩与及时复习之间的关系,某校志愿者展开了积极的调查活动:从高三年级640名学生中按系统抽样抽取40名学生进行问卷调查,所得信息如下:

数学成绩优秀(人数)

数学成绩合格(人数)

及时复习(人数)

20

4

不及时复习(人数)

10

6

1)张军是640名学生中的一名,他被抽中进行问卷调查的概率是多少(用分数作答);

2)根据以上数据,运用独立性检验的基本思想,研究数学成绩与及时复习的相关性.

参考公式:,其中为样本容量

临界值表:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

【答案】(1)(2)有的把握认为数学成绩与及时复习有关

【解析】

1)根据概率定义直接求解即可;

2)根据列联表,利用所给的公式求出的值,最后根据临界表,做出判断.

解析:(1

2)由题可得如下列联表

优秀

合格

合计

及时复习

20

4

24

不及时复习

10

6

16

合计

30

10

40

根据列联表中的数据,可得随机变量的观测值

因为,所以有的把握认为数学成绩与及时复习有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).

文学类专栏

科普类专栏

其他类专栏

文学类图书

100

40

10

科普类图书

30

200

30

其他图书

20

10

60

1)根据统计数据估计文学类图书分类正确的概率;

2)根据统计数据估计图书分类错误的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】郴州某超市计划按月订购一种饮料,每天进货量相同,进货成本每瓶6元,售价每瓶8元,未售出的饮料降价处理,以每瓶3元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

1)求六月份这种饮料一天的需求量X(单位:瓶)的分布列;

2)设六月份一天销售这种饮料的利润为Y(单位:元),当六月份这种饮料一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和函数的最值;

(2)已知关于的不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):

全月应缴纳所得额

税率

不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:

项目

每月税前抵扣金额(元)

说明

子女教育

1000

一年按12月计算,可扣12000

继续教育

400

一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600

大病医疗

5000

一年最高抵扣金额为60000

住房贷款利息

1000

一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除

住房租金

1500/1000/800

扣除金额需要根据城市而定

赡养老人

2000

一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上

老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734.201911月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出四个函数:①;②;③;④,从其中任选个,则事件:“所选个函数图象有且仅有个公共点”的概率是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某条公共汽车线路收支差额与乘客量的函数关系如下图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则(

A.①反映建议(2),③反映建议(1B.①反映建议(1),③反映建议(2

C.②反映建议(1),④反映建议(2D.④反映建议(1),②反映建议(2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在上恒正,则实数的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的图像与函数的图像关于直线对称.

1)求函数的解析式;

2)若函数在区间上的值域为,求实数的取值范围;

3)设函数,试用列举法表示集合.

查看答案和解析>>

同步练习册答案