¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÖ±Ïßl1£ºy=2x+m£¨m£¼0£©ÓëÅ×ÎïÏßC1£ºy=ax2£¨a£¾0£©ºÍÔ²C2£ºx2+£¨y+1£©2=5¶¼ÏàÇУ¬FÊÇC1µÄ½¹µã£®
£¨1£©ÇómÓëaµÄÖµ£»
£¨2£©ÉèAÊÇC1ÉϵÄÒ»¶¯µã£¬ÒÔAΪÇеã×÷Å×ÎïÏßC1µÄÇÐÏßl£¬Ö±Ïßl½»yÖáÓÚµãB£¬ÒÔFA£¬FBΪÁÚ±ß×÷ƽÐÐËıßÐÎFAMB£¬Ö¤Ã÷£ºµãMÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¼ÇµãMËùÔڵĶ¨Ö±ÏßΪl2£¬Ö±Ïßl2ÓëyÖá½»µãΪN£¬Á¬½ÓMF½»Å×ÎïÏßC1ÓÚP£¬QÁ½µã£¬Çó¡÷NPQµÄÃæ»ýSµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓڰ뾶Çó³öm£¬ÔÙÀûÓõ¼º¯ÊýÓëÇÐÏߵĹØϵÇó³öaµÄÖµ¼´¿É£®
£¨2£©ÏÈÇó³öÒÔAΪÇеãµÄÇÐÏßlµÄ·½³ÌÒÔ¼°µãA£¬BµÄ±í´ïʽ£¬ÔÙÀûÓÃÒÔFA£¬FBΪÁÚ±ß×÷ƽÐÐËıßÐÎFAMB£¬½áºÏÏòÁ¿ÔËËã¼´¿ÉÇó³öµãMËùÔڵĶ¨Ö±Ïߣ®
£¨3£©ÉèÖ±ÏßMF£ºy=kx+
3
2
£¬´úÈëy=
1
6
x2
µÃ£º
1
6
x2-kx-
3
2
=0
£¬½áºÏ¸ùÓëϵÊýµÄ¹Øϵ¼°Èý½ÇÐÎÃæ»ý¹«Ê½µÃ³öÃæ»ýµÄ±í´ïʽ£¬×îºóÀûÓú¯Êý˼Ïë¼´¿ÉÇóµÃ¡÷NPQµÄÃæ»ýSµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬Ô²C2£ºx2+£¨y+1£©2=5µÄÔ²ÐÄΪC2£¨0£¬-1£©£¬°ë¾¶ r=
5
£®£¨1·Ö£©
ÓÉÌâÉèÔ²Ðĵ½Ö±Ïßl1£ºy=2x+mµÄ¾àÀë d=
|1+m|
22+(-1)2
£®£¨3·Ö£©
¼´
|1+m|
22+(-1)2
=
5
£¬
½âµÃm=-6£¨m=4ÉáÈ¥£©£®£¨4·Ö£©
Éèl1ÓëÅ×ÎïÏßµÄÏàÇеãΪA0£¨x0£¬y0£©£¬ÓÖy¡ä=2ax£¬£¨5·Ö£©
µÃ 2ax0=2?x0=
1
a
£¬y0=
1
a
£®£¨6·Ö£©
´úÈëÖ±Ïß·½³ÌµÃ£º
1
a
=
2
a
-6
£¬¡àa=
1
6

ËùÒÔm=-6£¬a=
1
6
£®£¨7·Ö£©
£¨2£©ÓÉ£¨1£©ÖªÅ×ÎïÏßC1·½³ÌΪ y=
1
6
x2
£¬½¹µã F(0£¬
3
2
)
£®£¨8·Ö£©
Éè A(x1£¬
1
6
x
2
1
)
£¬ÓÉ£¨1£©ÖªÒÔAΪÇеãµÄÇÐÏßlµÄ·½³ÌΪ y=
1
3
x1(x-x1)+
1
6
x
2
1
£®£¨10·Ö£©
Áîx=0£¬µÃÇÐÏßl½»yÖáµÄBµã×ø±êΪ (0£¬-
1
6
x
2
1
)
£¨11·Ö£©
ËùÒÔ
FA
=(x1£¬
1
6
x
2
1
-
3
2
)
£¬
FB
=(0£¬-
1
6
x
2
1
-
3
2
)
£¬£¨12·Ö£©
¡à
FM
=
FA
+
FB
=(x1£¬-3)
£¨13·Ö£©
ÒòΪFÊǶ¨µã£¬ËùÒÔµãMÔÚ¶¨Ö±Ïß y=-
3
2
ÉÏ£®£¨14·Ö£©
£¨3£©ÉèÖ±ÏßMF£ºy=kx+
3
2
£¬´úÈëy=
1
6
x2
µÃ£º
1
6
x2-kx-
3
2
=0
£¬µÃx1+x2=6k£¬x1x2=-9£®
S¡÷NPQ=
1
2
|NF||x1-x2|=
1
2
¡Á3¡Á
(x 1+x 2 2 -4x 1x 2
=9
1+k2

¡ßk¡Ù0£¬¡àS¡÷NPQ£¾9£¬
¡÷NPQµÄÃæ»ýSµÄÈ¡Öµ·¶Î§£¨9£¬+¡Þ£©£®
µãÆÀ£º±¾ÌâÊǶÔÔ²ÓëÍÖԲ֪ʶµÄ×ۺϿ¼²é£®µ±Ö±ÏßÓëÔ²ÏàÇÐʱ£¬¿ÉÒÔÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓڰ뾶Çó½â£®£¬Ò²¿ÉÒÔ°ÑÖ±ÏßÓëÔ²µÄ·½³ÌÁªÁ¢ÈöÔÓ¦·½³ÌµÄÅбðʽΪ0Çó½â£®±¾ÌâÓõÄÊǵÚÒ»ÖÖ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÖ±Ïßl1£º4x+y=0£¬Ö±Ïßl2£ºx+y-1=0ÒÔ¼°l2ÉÏÒ»µãP£¨3£¬-2£©£®
£¨¢ñ£©ÇóÔ²ÐÄMÔÚl1ÉÏÇÒÓëÖ±Ïßl2ÏàÇÐÓÚµãPµÄÔ²¡ÑµÄ·½³Ì£®
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£»ÈôÖ±Ïßl1·Ö±ðÓëÖ±Ïßl2¡¢Ô²¡ÑÒÀ´ÎÏཻÓÚA¡¢B¡¢CÈýµã£¬ÀûÓôúÊý·¨ÑéÖ¤£º|AP|2=|AB|•|AC|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±Ïßl1£º4x+y=0£¬Ö±Ïßl2£ºx+y-1=0ÒÔ¼°l2ÉÏÒ»µãP£¨3£¬-2£©£®ÇóÓÐÔ²ÐÄÔÚl1ÉÏÇÒÓëÖ±Ïßl2ÏàÇÐÓÚµãPµÄÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±Ïßl1¡Îl2£¬µãAÊÇl1£¬l2Ö®¼äµÄ¶¨µã£¬µãAµ½l1£¬l2Ö®¼äµÄ¾àÀë·Ö±ðΪ3ºÍ2£¬µãBÊÇl2ÉϵÄÒ»¶¯µã£¬×÷AC¡ÍAB£¬ÇÒACÓël1½»ÓÚµãC£¬Ôò¡÷ABCµÄÃæ»ýµÄ×îСֵΪ
6
6
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±Ïßl1¡Îl2£¬µãAÊÇl1£¬l2ÉÏÁ½Ö±ÏßÖ®¼äµÄ¶¯µã£¬ÇÒµ½l1¾àÀëΪ4£¬µ½l2¾àÀëΪ3£¬Èô
AC
AB
=0£¬AC
ÓëÖ±Ïßl2½»ÓÚµãC£¬Ôò¡÷ABCÃæ»ýµÄ×îСֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸