精英家教网 > 高中数学 > 题目详情

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:

经计算: ,其中分别为试验数据中的温度和死亡株数, .

(1)若用线性回归模型,求关于的回归方程(结果精确到);

(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.

(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;

(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据 …… ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .

【答案】() ()详见解析

【解析】试题分析:(1)利用回归方程的公式,求得线性回归方程为: =6.6x139.4;(2(i)因为0.93980.9522所以回归方程比线性回归方程=6.6x138.6拟合效果更好;ii)当温度时, 即当温度为35C时该批紫甘薯死亡株数为190.

试题解析:

()由题意得,

336.6326=139.4

关于的线性回归方程为: =6.6x139.4

(注:若用计算出,则酌情扣1

() i)线性回归方程=6.6x138.6对应的相关系数为:

因为0.93980.9522

所以回归方程比线性回归方程=6.6x138.6拟合效果更好.

ii)由(i)知,当温度时,

即当温度为35C时该批紫甘薯死亡株数为190.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新型冠状病毒肺炎疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.下表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.

日期代码

1

2

3

4

5

6

7

8

累计确诊人数

4

8

16

31

51

71

97

122

为了分析该国累计感染人数的变化趋势,小王同学分别用两种模型:①,②对变量的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差):经过计算得,其中.

1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;

2)根据(1)问选定的模型求出相应的回归方程(系数均保留一位小数);

3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数作出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少.

附:回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关扶植政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:

中国新能源汽车产销情况一览表

新能源汽车产量

新能源汽车销量

产量(万辆)

比上年同期增长(

销量(万辆)

比上年同期增长(

2018年3月

6.8

105

6.8

117.4

4月

8.1

117.7

8.2

138.4

5月

9.6

85.6

10.2

125.6

6月

8.6

31.7

8.4

42.9

7月

9

53.6

8.4

47.7

8月

9.9

39

10.1

49.5

9月

12.7

64.4

12.1

54.8

10月

14.6

58.1

13.8

51

11月

17.3

36.9

16.9

37.6

1-12月

127

59.9

125.6

61.7

2019年1月

9.1

113

9.6

138

2月

5.9

50.9

5.3

53.6

2019年2月份新能源汽车销量结构图

根据上述图表信息,下列结论错误的是( )

A.2018年4月份我国新能源汽车的销量高于产量

B.2017年3月份我国新能源汽车的产量不超过3.4万辆

C.2019年2月份我国插电式混合动力汽车的销量低于1万辆

D.2017年我国新能源汽车总销量超过70万辆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知分别为椭圆的左、右焦点,且椭圆经过点和点,其中为椭圆的离心率.

(1)求椭圆的方程;

(2)过点的直线椭圆于另一点,点在直线上,且.若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列三个正方体中,均为所在棱的中点,过作正方体的截面.在各正方体中,直线与平面的位置关系描述正确的是

A. 平面的有且只有①;平面的有且只有②③

B. 平面的有且只有②;平面的有且只有①

C. .平面的有且只有①;平面的有且只有②

D. 平面的有且只有②;平面的有且只有③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.

(1)求证:

(2)若平面,求二面角的大小;

(3)在(2)的条件下,侧棱上是否存在一点,使得平面.若存在,求的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=2,前3项和为S3.

(1)求{an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆切于点,与圆交于点,圆在点处的切线交于点为坐标原点,则的面积的最大值为( )

A.B.2C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD PAAD2EF分别为PAAB的中点,且DFCE.

(1)求AB的长;

(2)求直线CF与平面DEF所成角的正弦值.

查看答案和解析>>

同步练习册答案