精英家教网 > 高中数学 > 题目详情

【题目】如图在四面体ABCD中,若截面PQMN是正方形,则在下列命题中正确的有 .(填上所有正确命题的序号)
①AC⊥BD
②AC=BD
③AC∥截面PQMN
④异面直线PM与BD所成的角为45°.

【答案】①③④
【解析】解:在四面体ABCD中,∵截面PQMN是正方形,∴PQ∥MN,PQ平面ACD,MN平面ACD,∴PQ∥平面ACD.
∵平面ACB∩平面ACD=AC,∴PQ∥AC,可得AC∥平面PQMN.
同理可得BD∥平面PQMN,BD∥PN.
∵PN⊥PQ,∴AC⊥BD.
由BD∥PN,
∴∠MPN是异面直线PM与BD所成的角,且为45°.
由上面可知:BD∥PN,PQ∥AC.

而AN≠DN,PN=MN,
∴BD≠AC.
综上可知:①③④都正确.
所以答案是:①③④.
【考点精析】根据题目的已知条件,利用命题的真假判断与应用和异面直线及其所成的角的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系;异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点分别为A(2,3),B(1,﹣2),C(﹣3,4),求
(1)BC边上的中线AD所在的直线方程;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ),设为圆轴负半轴的交点,过点作圆的弦,并使弦的中点恰好落在轴上.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)延长交曲线于点,曲线在点处的切线与直线交于点,试判断以点为圆心,线段长为半径的圆与直线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是(  )
A.f(x)=
B.f(x)=+1
C.f(x)=
D.f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),四点 中恰有三点在椭圆上.

1的方程;

2设直线不经过点且与相交于两点,若直线与直线的斜率之和为证明: 过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.
(1)求该圆台母线的长;
(2)求该圆台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为, 已知,且 三个数依次成等差数列.

(Ⅰ)求的值;

(Ⅱ)求数列的通项公式;

(Ⅲ)若数列满足,设是其前项和,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的直线的方程:
(1)经过两条直线2x﹣3y+10=0和3x+4y﹣2=0的交点,且垂直于直线3x﹣2y+4=0;
(2)经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且平行于直线4x﹣3y﹣7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x>0时,函数f(x)的解析式为
(1)求当x<0时函数f(x)的解析式;
(2)用定义证明f(x)在(0,+∞)上的是减函数.

查看答案和解析>>

同步练习册答案