精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(UA)∩B=(
A.?
B.{x| <x≤1}
C.{x|x<1}
D.{x|0<x<1}

【答案】D
【解析】解:由题意A={y|y=2x+1}={y|y>1},B={x|lnx<0}={x|0<x<1},故CUA={y|y≤1}
∴(CUA)∩B={x|0<x<1}
故选D
【考点精析】通过灵活运用集合的交集运算和集合的补集运算,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立;对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作:CUA即:CUA={x|x∈U且x∈A};补集的概念必须要有全集的限制即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是平行四边形,已知,平面平面.

(1)证明:

(2)若,求平面与平面所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C1yx2(p>0)的焦点与双曲线C2y21的右焦点的连线交C1于第一象限的点M.C1在点M处的切线平行于C2的一条渐近线,则p( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xoy中,椭圆C1 + =1(a>b>0)的离心率为 ,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.
(1)求椭圆的方程;
(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣alnx,其中a>0,x>0,e是自然对数的底数. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数g(x)= ,证明:0<g(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+|x|)﹣ ,则使得f(x)>f(2x﹣1)成立的取值范围是(
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.(
D.(﹣∞,﹣ ,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”,已知函数f(x)=x2(x∈R),g(x)= (x<0),h(x)=2elnx,有下列命题:
①F(x)=f(x)﹣g(x)在 内单调递增;
②f(x)和g(x)之间存在“隔离直线”,且b的最小值为﹣4;
③f(x)和g(x)之间存在“隔离直线”,且k的取值范围是(﹣4,0];
④f(x)和h(x)之间存在唯一的“隔离直线”y=2 x﹣e.
其中真命题的个数为(请填所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名射击运动员分别对一个目标射击1次,甲射中的概率为,乙射中的概率为,求:

(1)2人中恰有1人射中目标的概率;

(2)2人至少有1人射中目标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,Sn是{an}的前n项和且Sn=2n﹣an
(1)求a1 , an
(2)若数列{bn}中,bn=n(2﹣n)(an﹣2),且对任意正整数n,都有 ,求t的取值范围.

查看答案和解析>>

同步练习册答案