精英家教网 > 高中数学 > 题目详情

【题目】在以坐标原点为极点,轴的正半轴为极轴建立的极坐标系中,曲线的参数方程(为参数),曲线的极坐标方程:.

(1)求曲线和曲线的直角坐标方程;

(2)设曲线轴于点(不是原点),过点的直线交曲线于A,B两个不同的点,求的取值范围.

【答案】(1);(2)

【解析】

(1)利用正弦与余弦的关系直接消去,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化公式得到的直角坐标方程;

(2)将直线的参数方程与曲线的普通方程联立,利用韦达定理及直线中参数的几何意义求得结果.

(1)将(为参数)消去参数得到,将两边同乘以,利用极坐标与直角坐标的互化公式得到

(2)解得x=0或4,所以,所以直线的参数方程为参数)代入

整理可得:,由得:

因此,的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为[01]的函数fx)同时满足以下三个条件:

对任意的x∈[01],总有fx≥0

f1)=1

x1x2∈[01],且x1x2∈[01]时,f(x1x2)≥f(x1)f(x2)成立.称这样的函数为“友谊函数”.

请解答下列各题:

1)已知fx)为“友谊函数”,求f0)的值;

2)函数gx)=2x1在区间[01]上是否为“友谊函数”?请给出理由;

3)已知fx)为“友谊函数”,假定存在x0∈[01],使得f(x0)∈[01],且f[f(x0)]x0,求证: f(x0)x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数分别是定义在上的偶函数和奇函数,且

1)求函数的解析式;

2)若对任意,不等式恒成立,求实数的最大值;

3)设,若函数的图象有且只有一个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的极坐标方程为:ρ2-4ρcos(θ-)+6=0.

(1)将极坐标方程化为普通方程;

(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有两个不同的零点,求实数的取值范围;

(2)求当时, 恒成立的的取值范围,并证明

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2019年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图,给出下列4个结论

其中结论正确的是(

A.深圳的变化幅度最小,北京的平均价格最高;

B.深圳和厦门往返机票的平均价格同去年相比有所下降;

C.平均价格从高到低位于前三位的城市为北京,深圳,广州;

D.平均价格的涨幅从高到低位于前三位的城市为天津,西安,上海.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它们在x=1处的切线互相平行.

(1)求b的值;

(2)若函数且方程F(x)=a2有且仅有四个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足约束条件

1)若点在上述不等式所表示的平面区域内,求实数的取值范围.

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

同步练习册答案