【题目】某超市为了解端午节期间粽子的销售量,对其所在销售范围内的1000名消费者在端午节期间的粽子购买量(单位:g)进行了问卷调查,得到如图所示的频率分布直方图.
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)求这1000名消费者的棕子购买量在600g~1400g的人数;
(Ⅲ)求这1000名消费者的人均粽子购买量(频率分布直方图中同一组的数据用该组区间的中点值作代表).
【答案】(Ⅰ)a=0.001 (Ⅱ)620 (Ⅲ)1208g
【解析】
(Ⅰ)由频率分布直方图的性质,列出方程,即可求解得值;
(Ⅱ)先求出粽子购买量在的频率,由此能求出这1000名消费者的粽子购买量在的人数;
(Ⅲ)由频率分布直方图能求出1000名消费者的人均购买粽子购买量
(Ⅰ)由频率分布直方图的性质,可得(0.0002+0.00055+a+0.0005+0.00025)×400=1,
解得a=0.001.
(Ⅱ)∵粽子购买量在600g~1400g的频率为:(0.00055+0.001)×400=0.62,
∴这1000名消费者的棕子购买量在600g~1400g的人数为:0.62×1000=620.
(Ⅲ)由频率分布直方图得这1000名消费者的人均粽子购买量为:
(400×0.0002+800×0.00055+1200×0.001+1600×0.0005+2000×0.00025)×400=1208g.
科目:高中数学 来源: 题型:
【题目】已知正△ABC内接于半径为2的圆O,点P是圆O上的一个动点,则 的取值范围是( )
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 =1(a>b>0)上的点到右焦点F的最小距离是 ﹣1,F到上顶点的距离为 ,点C(m,0)是线段OF上的一个动点.
(1)求椭圆的方程;
(2)是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得( + )⊥ ,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如表:
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程R(公里) | ||
100≤R<180 | 180≤R<280 | <280 | |
纯电动乘用车 | 2.5万元/辆 | 4万元/辆 | 6万元/辆 |
某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 | 频数 | 频率 |
100≤R<180 | 3 | 0.3 |
180≤R<280 | 6 | x |
R≥280 | y | z |
合计 | M | 1 |
(1)求x、y、z、M的值;
(2)若从这M辆纯电动乘用车任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;
(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为X(单位:万元),求X的分布列和数学期望值E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装批发市场1-5月份的服装销售量与利润的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销售量 (万件) | 3 | 6 | 4 | 7 | 8 |
利润 (万元) | 19 | 34 | 26 | 41 | 46 |
(1)从这五个月的利润中任选2个,分别记为, ,求事件“, 均不小于30”的概率;
(2)已知销售量与利润大致满足线性相关关系,请根据前4个月的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的.请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想.参考公式: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下实功,在在精准落实上见实效现从全县扶贫对象中随机抽取人对扶贫工作的满意度进行调查,以茎叶图中记录了他们对扶贫工作满意度的分数(满分分)如图所示,已知图中的平均数与中位数相同.现将满意度分为“基本满意”(分数低于平均分)、“满意”(分数不低于平均分且低于分)和“很满意”(分数不低于分)三个级别.
(1)求茎叶图中数据的平均数和的值;
(2)从“满意”和“很满意”的人中随机抽取人,求至少有人是“很满意”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com