精英家教网 > 高中数学 > 题目详情
5.已知p:-2≤x≤1,q:(x-a)(x-a-4)>0,若p是q成立的充分不必要条件,则实数a的取值范围是(-∞,-6)∪(1,+∞).

分析 先求出q下的不等式,得到q:x<a,或x>a+4,而若p是q成立的充分不必要条件,即由p能得到q,而由q得不到p,所以a>1,或a+4<-2,这样便得到了a的取值范围.

解答 解:q:x<a,或x>a+4;
∴若p是q成立的充分不必要条件,则:
a>1,或a+4<-2;
∴a>1,或a<-6;
∴实数a的取值范围是(-∞,-6)∪(1,+∞).
故答案为:(-∞,-6)∪(1,+∞).

点评 考查解一元二次不等式,以及充分条件、必要条件、充分不必要条件的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.直三棱柱ABC-A1B1C1的三视图如图所示.

(1)求三棱柱ABC-A1B1C1的体积;
(2)若点D为棱AB的中点,求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)设a、b均为正实数,求证:$\frac{1}{a^2}+\frac{1}{b^2}+ab≥2\sqrt{2}$
(2)已知a>0,b>0,c>0,a2+b2+c2=4求ab+bc+ac的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=f(x)(x∈R)是奇函数且当x∈(0,+∞)时是减函数,若f(1)=0,则函数y=f(x2-2x)的零点共有(  )
A.4个B.6个C.3个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.
(Ⅰ)在图中画出这个正方形(保留画图痕迹,不用说明画法和理由)
(Ⅱ)求平面α把该长方体分成的两部分中较小部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若样本数据x1,x2,…,x10的方差为8,则数据2x1-1,2x2-1,…,2x10-1的方差为32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数x,y满足x+2y-9=0,则$\frac{2}{y}+\frac{1}{x}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数满足f(x)=-f(x+2),则与f(100)一定相等的是(  )
A.f(1)B.f(2)C.f(3)D.f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1时有极值0.
(1)求常数 a,b的值;  
(2)求f(x)的单调区间.
(3)方程f(x)=c在区间[-4,0]上有三个不同的实根时实数c的范围.

查看答案和解析>>

同步练习册答案