精英家教网 > 高中数学 > 题目详情
14.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.当|OP|=|OM|时,则直线l的斜率(  )
A.k=3B.k=-3C.k=$\frac{1}{3}$D.k=-$\frac{1}{3}$

分析 圆心为C(0,4),半径为4.设M(x,y),则$\overrightarrow{CM}$=(x,y-4),$\overrightarrow{MP}$=(2-x,2-y).由题设知$\overrightarrow{CM}$•$\overrightarrow{MP}$=0,从而M的轨迹方程是(x-1)2+(y-3)2=2.当|OP|=|OM|时,x2+y2=8,由P在以(1,3)为圆心,$\sqrt{2}$为半径的圆上,知|CP|=|CM|,由此能求出直线l的斜率.

解答 解:圆C的方程可化为x2+(y-4)2=16,
所以圆心为C(0,4),半径为4.
设M(x,y),则$\overrightarrow{CM}$=(x,y-4),$\overrightarrow{MP}$=(2-x,2-y).
由题设知$\overrightarrow{CM}$•$\overrightarrow{MP}$=0,
故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.
当|OP|=|OM|时,x2+y2=8,
∵P(2,2)满足M的轨迹方程,即P在以(1,3)为圆心,$\sqrt{2}$为半径的圆上,
∴|CP|=|CM|,
∴直线l的斜率kPM=-$\frac{1}{{k}_{OC}}$=-$\frac{1}{3}$.
故选:D.

点评 本题考查直线的斜率的求法,考查圆的方程、直线与圆的位置关系,考查推理论证能力、运算求解能力,考查转化化归思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知P为椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任意一点,F1,F2为左、右焦点,M为PF1中点.如图所示:若|OM|+$\frac{1}{2}$|PF1|=2,离心率e=$\frac{\sqrt{3}}{2}$.
(1)求椭圆E的标准方程;
(2)已知直线l经过(-1,$\frac{1}{2}$)且斜率为$\frac{1}{2}$与椭圆交于A,B两点,求弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正数数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.
(1)求数列{an}的通项公式;
(2)设bn=(1-an2-a(1-an),若bn+1>bn对任意n∈N*恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,若$\overrightarrow{CP}$•$\overrightarrow{AB}$≥$\overrightarrow{PA}$•$\overrightarrow{PB}$,则λ的最大值是(  )
A.$\frac{{2+\sqrt{2}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是$\frac{9π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanθ=2,则sinθcosθ=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+1(a∈R),试讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2x+2,则f(2)的值为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线E:$\frac{x^2}{9}-\frac{y^2}{16}=1$的左右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=7,则|PF2|等于(  )
A.1B.13C.1或13D.15

查看答案和解析>>

同步练习册答案