精英家教网 > 高中数学 > 题目详情
18.如图,空间四边形OABC中,E,F分别为OA,BC的中点,设$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c,试用a,b,c表示$\overrightarrow{EF}$.

分析 利用向量的加减法,及线性运算,即可得出结论.

解答 解:由题意,$\overrightarrow{EF}$=$\overrightarrow{EA}$+$\overrightarrow{AB}$+$\overrightarrow{BF}$=$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{a}$+$\frac{1}{2}$($\overrightarrow{c}$-$\overrightarrow{b}$)=$\frac{1}{2}$($\overrightarrow{b}$+$\overrightarrow{c}$-$\overrightarrow{a}$).

点评 本题考查了平面向量的加减法、线性运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,等腰梯形ABCD中,AB∥CD,AD⊥BD,矩形ABEF所在的平面和平面ABCD相互垂直. 
(1)求证:AD⊥平面DBE;
(2)若AB=2,AD=AF=1,求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在x轴上,记△BCF的面积为S1,△ACF的面积为S2,则$\frac{{S}_{1}^{2}}{{S}_{2}^{2}}$等于是(  )
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数a满足下列两个条件:
①关于x的方程ax2+3x+1=0有解;
②代数式log2(a+3)有意义.
则使得指数函数y=(3a-2)x为减函数的概率为(  )
A.$\frac{4}{63}$B.$\frac{1}{16}$C.$\frac{3}{63}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个判断:?
①某校高三(1)班的人数和高三(2)班的人数分别是m和n,某次数学测试平均分分别是a,b,则这两个班的数学平均分为$\frac{a+b}{2}$;?
②从总体中抽取的样本(1,2.5),(2,3.1),(4,3.9),(5,4.4),则回归直线y=bx+a必过点(3,3.6);
③在频率分布直方图中,众数左边和右边的所有直方图的面积相等.
其中正确的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}满足Sn=2n-an(n∈N*).
(1)计算a1、a2、a3,并猜想an的通项公式;
(2)用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.命题“若x2=1,则x=1的否命题为:“若x2=1,则x≠1”
B.“m=1”是“直线x-my=0和直线x+my=0互相垂直”的充要条件
C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过抛物线x2=4y的焦点且与其对称轴垂直的弦AB的长度是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线${C_1}:\frac{x^2}{4}-{y^2}=1$,双曲线${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若${S_{△OM{F_2}}}=16$,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是(  )
A.32B.16C.8D.4

查看答案和解析>>

同步练习册答案