精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

设函数.

(Ⅰ)当时,求函数的极小值;

(Ⅱ)讨论函数零点的个数;

(Ⅲ)若对任意的恒成立,求的取值范围.

【答案】(1)极小值为2.(2)见解析(3)

【解析】试题分析: 利用 判定 的增减性并求出的极小值;(由函数 求出 求出 的值域,讨论的取值,对应 的零点情况; 恒成立,等价于 恒成立;即 上单调递减, 求出的取值范围.

试题解析:(Ⅰ)由题设,当时,,易得函数的定义域为

.∴当时,上单调递减;

∴当时,上单调递增;所以当时,取得极小值,所以的极小值为2.

(Ⅱ)函数,令,得.

,则.

∴当时,在(0,1)上单调递增;

∴当时,上单调递减;

所以的最大值为,又,可知:

①当时,函数没有零点;

②当时,函数有且仅有1个零点;

③当时,函数有2个零点;

④当时,函数有且只有1个零点.

综上所述:

时,函数没有零点;当时,函数有且仅有1个零点;当时,函数有2个零点.

(Ⅲ)对任意恒成立,等价于恒成立. .

,∴等价于上单调递减.

上恒成立,

恒成立,

(对仅在时成立).

的取值范围是.

【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(可)或恒成立(即可);② 数形结合(图象在 上方即可);③ 讨论最值恒成立;④ 讨论参数.本题(Ⅲ)是利用方法 ① 求得 的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场拟对某商品进行促销,现有两种方案供选择,每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,预计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4,第二个月的销量是第一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令表示实施方案的第二个月的销量是促销前销量的倍数.

(Ⅰ)求 的分布列;

(Ⅱ)不管实施哪种方案, 与第二个月的利润之间的关系如下表,试比较哪种方案第二个月的利润更大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y=﹣ +bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).

(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:直线l和l外一点P.(如图1)
求作:直线l的垂线,使它经过点P.
作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.
所以直线PQ就是所求的垂线.
请回答:该作图的依据是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y22x4y40

1)求圆C关于直线对称的圆的方程;

2)问是否存在斜率为1的直线l,使l被圆C截得弦AB,且以AB为直径的圆经过点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.

(1)求该场多少天购买一次饲料才能使平均每天支付的总费用最少;

(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时,其价格可享受八五折优惠(即原价为85%).问:该场是否应考虑利用此优惠条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点的坐标为,圆的方程为,动点在圆上运动,点延长线上一点,且

1)求点的轨迹方程.

2)过点作圆的两条切线 ,分别与圆相切于点 ,求直线的方程,并判断直线与点所在曲线的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,焦点F1F2在坐标轴上,离心率为且过点(4,- )

(1)求双曲线方程;

(2)若点M(3m)在双曲线上,求证:点M在以F1F2为直径的圆上;

(3)求△F1MF2的面积.

查看答案和解析>>

同步练习册答案