精英家教网 > 高中数学 > 题目详情
已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.
【答案】分析:(I)根据对数函数的定义求得函数的定义域,再根据f(x)的解析式求出f(x)的导函数,然后分别令导函数大于0和小于0得到关于x的不等式,求出不等式的解集即可得到相应的x的范围即分别为函数的递增和递减区间;
(II)假设函数f(x)的图象上存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”,根据斜率公式求出直线AB的斜率,利用导数的几何意义求出直线AB的斜率,它们相等,再通过构造函数,利用导数研究函数的单调性和最值即可证明结论.
解答:解:(Ⅰ)函数f(x)的定义域是(0,+∞).…(1分)
由已知得,.…(2分)
(1)当a>0时,令f'(x)>0,解得0<x<1; 令f'(x)<0,解得x>1.
所以函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.…(3分)
(2)当a<0时,
①当时,即a<-1时,令f'(x)>0,解得或x>1;
令f'(x)<0,解得
所以,函数f(x)在和(1,+∞)上单调递增,在上单调递减;…(4分)
②当时,即a=-1时,显然,函数f(x)在(0,+∞)上单调递增; …(5分)
③当时,即-1<a<0时,令f'(x)>0,解得0<x<1或
令f'(x)<0,解得
所以,函数f(x)在(0,1)和上单调递增,在上单调递减.…(6分)
综上所述,(1)当a>0时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;
(2)当a<-1时,函数f(x)在和(1,+∞)上单调递增,在上单调递减;
(3)当a=-1时,函数f(x)在(0,+∞)上单调递增;
(4)当-1<a<0时,函数f(x)在(0,1)和上单调递增,在上单调递减.…(7分) 
(Ⅱ)假设函数f(x)存在“中值相依切线”.
设A(x1,y1),B(x2,y2)是曲线y=f(x)上的不同两点,且0<x1<x2

=
=…(8分)
曲线在点M(x,y)处的切线斜率k=f'(x)==,…(9分)
依题意得:=
化简可得:=
==.…(11分)
(t>1),上式化为:
.…(12分)
=
因为t>1,显然g'(t)>0,所以g(t)在(1,+∞)上递增,
显然有g(t)>2恒成立.
所以在(1,+∞)内不存在t,使得成立.
综上所述,假设不成立.所以,函数f(x)不存在“中值相依切线”.…(14分)
点评:此题考查学生会利用导函数的正负求出函数的单调区间,灵活运用中点坐标公式化简求值,掌握反证法进行命题证明的方法,是一道综合题,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函数f(x)的导函数f′(x)的最小值;
(II)当a=3时,求函数h(x)的单调区间及极值;
(III)若对任意的x1,x2∈(0,+∞),x1≠x2,函数h(x)满足
h(x1)-h(x2)
x1-x2
,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=(a+1)x,h(x)=x2+lg|a+2|,f(x)=g(x)+h(x),其中a∈R且a≠-2.
(1)若f(x)为偶函数,求a的值;
(2)命题p:函数f(x)在区间[(a+1)2,+∞)上是增函数,命题q:函数g(x)是减函数,如果p或q为真,p且q为假,求a的取值范围.
(3)在(2)的条件下,比较f(2)与3-lg2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函数f(x)的导函数f′(x)的最小值;
(II)当a=3时,求函数h(x0的单调区间及极值;
(III)若对任意的x1,x2∈(0,+∞),x1≠x2,函数h(x)满足
h(x1)-h(x2)
x1-x2
>-1
,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州高级中学高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省百所重点高中高三(上)段考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

同步练习册答案