【题目】已知正项等差数列的前项和为,若,且成等比数列.
(1)求的通项公式;
(2)设,记数列的前项和为,求
科目:高中数学 来源: 题型:
【题目】某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:
中学编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采购加工标准评分x | 100 | 95 | 93 | 83 | 82 | 75 | 70 | 66 |
卫生标准评分y | 87 | 84 | 83 | 82 | 81 | 79 | 77 | 75 |
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)
(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.
参考公式:,;
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同。每次游戏需要从这两个箱子里面各随机摸出两个球.
(1)设在一次游戏中,摸出红球的个数为,求分布列.
(2)若在一次游戏中,摸出的红球不少于2个,则获奖.
①求一次游戏中,获奖的概率;
②若每次游戏结束后,将球放回原来的箱子,设4次游戏中获奖次数为,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过两点,且圆心在直线上.
(1)求圆的方程;
(2)已知过点的直线与圆相交截得的弦长为,求直线的方程;
(3)已知点,在平面内是否存在异于点的定点,对于圆上的任意动点,都有为定值?若存在求出定点的坐标,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是:( )
(1)使的值为的赋值语句是;
(2)用秦九韶算法求多项式在的值时,的值;
(3);
(4)用辗转相除法求得和的最大公约数是.
A.(1)(2)B.(2)(3)C.(1)(4)D.(2)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴为极轴的极坐标系中,圆的方程.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)若点的直角坐标为,圆与直线交于两点,求弦中点的直角坐标和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com