精英家教网 > 高中数学 > 题目详情

【题目】已知无穷数列{an}的各项都是正数,其前n项和为Sn , 且满足:a1=a,rSn=anan+1﹣1,其中a≠1,常数r∈N;
(1)求证:an+2﹣an是一个定值;
(2)若数列{an}是一个周期数列(存在正整数T,使得对任意n∈N* , 都有an+T=an成立,则称{an}为周期数列,T为它的一个周期,求该数列的最小周期;
(3)若数列{an}是各项均为有理数的等差数列,cn=23n1(n∈N*),问:数列{cn}中的所有项是否都是数列{an}中的项?若是,请说明理由,若不是,请举出反例.

【答案】
(1)证明:∵rSn=anan+1﹣1,①

∴rSn+1=an+1an+2﹣1,②

②﹣①,得:ran+1=an+1(an+2﹣an),

∵an>0,∴an+2﹣an=r


(2)解:当n=1时,ra=aa2﹣1,∴a2=

根据数列是隔项成等差,写出数列的前几项:a,r+ ,a+r,2r+ ,a+2r,3r+ ,….

当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,

∴r=0时,数列写出数列的前几项:a, ,a, ,….

所以当a>0且a≠1时,该数列的周期是2


(3)解:因为数列{an}是一个有理等差数列,a+a+r=2(r+ ),

化简2a2﹣ar﹣2=0,a= 是有理数.

=k,是一个完全平方数,

则r2+16=k2,r,k均是非负整数r=0时,a=1,an=1,Sn=n.

r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,

其中只有 ,符合要求,

此时a=2,an= ,Sn=

∵cn=23n1(n∈N*),an=1时,不符合,舍去.

an= 时,若23n1= ,则:3k=4×3n1﹣1,n=2时,k= ,不是整数,

因此数列{cn}中的所有项不都是数列{an}中的项


【解析】(1)由rSn=anan+1﹣1,利用迭代法得:ran+1=an+1(an+2﹣an),由此能够证明an+2﹣an为定值.(2)当n=1时,ra=aa2﹣1,故a2= ,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{an}是一个有理等差数列,所以a+a=r=2(r+ ),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出Sn
【考点精析】根据题目的已知条件,利用数列的通项公式的相关知识可以得到问题的答案,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年春晚过后,为了研究演员上春晚次数与受关注度的关系,某网站对其中一位经常上春晚的演员上春晚次数与受关注度进行了统计,得到如下数据:

上春晚次数x(单位:次)

2

4

6

8

10

粉丝数量y(单位:万人)

10

20

40

80

100


(1)若该演员的粉丝数量g(x)≤g(1)=0与上春晚次数x满足线性回归方程,试求回归方程 = x+ ,并就此分析,该演员上春晚12次时的粉丝数量;
(2)若用 (i=1,2,3,4,5)表示统计数据时粉丝的“即时均值”(四舍五入,精确到整数),从这5个“即时均值”中任选2数,记所选的2数之和为随机变量η,求η的分布列与数学期望. 参考公式: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在[-1,1]上的奇函数,且,若任意的,当时,总有

1)判断函数[-1,1]上的单调性,并证明你的结论;

2)解不等式:

3)若对所有的恒成立,其中是常数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对一切实数x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,则实数a的取值范围是(
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;
(1)求三棱锥A﹣BCD的体积;
(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列{an}的各项都是正数,其前n项和为Sn , 且满足:a1=a,rSn=anan+1﹣1,其中a≠1,常数r∈N;
(1)求证:an+2﹣an是一个定值;
(2)若数列{an}是一个周期数列(存在正整数T,使得对任意n∈N* , 都有an+T=an成立,则称{an}为周期数列,T为它的一个周期,求该数列的最小周期;
(3)若数列{an}是各项均为有理数的等差数列,cn=23n1(n∈N*),问:数列{cn}中的所有项是否都是数列{an}中的项?若是,请说明理由,若不是,请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率e= ,左、右焦点分别为F1、F2 , 定点,P(2, ),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M、F2N的倾斜角分别为α、β且α+β=π,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是不小于3的正整数,集合,对于集合中任意两个元素.

定义1:.

定义2:若,则称互为相反元素,记作,或.

(Ⅰ)若,试写出,以及的值;

(Ⅱ)若,证明:

(Ⅲ)设是小于的正奇数,至少含有两个元素的集合,且对于集合中任意两个不相同的元素,都有,试求集合中元素个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】牛顿法求方程f(x)=0近似根原理如下:求函数y=f(x)在点(xn , f(xn))处的切线y=f′(xn)(x﹣xn)+f(xn),其与x轴交点横坐标xn+1=xn (n∈N*),则xn+1比xn更靠近f(x)=0的根,现已知f(x)=x2﹣3,求f(x)=0的一个根的程序框图如图所示,则输出的结果为(
A.2
B.1.75
C.1.732
D.1.73

查看答案和解析>>

同步练习册答案