精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角坐标系xOy中,角α的顶点是原点,始边与x轴正半轴重合,终边交单位圆于点A,且.将角α的终边按逆时针方向旋转,交单位圆于点B.记Ax1y1),Bx2y2).

(Ⅰ)若,求x2

(Ⅱ)分别过ABx轴的垂线,垂足依次为CD.记AOC的面积为S1,△BOD的面积为S2.若S1=2S2,求角α的值.

【答案】I;(II

【解析】

试题(I)根据三角函数定义写出,再利用和角公式求解;(II)根据已知三角形的面积关系列等式,再利用三角变换求解.

)解:由三角函数定义,得2

因为

所以3

所以5

)解:依题意得

所以7

9

依题意得

整理得11

因为, 所以

所以, 即13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂计划出售一种产品,经销人员并不是根据生产成本来确定这种产品的价格,而是通过对经营产品的零售商对于不同的价格情况下他们会进多少货进行调查,通过调查确定了关系式P=-750x+15000,其中P为零售商进货的数量(单位:件),x为零售商支付的每件产品价格(单位:元).现估计生产这种产品每件的材料和劳动生产费用为4元,并且工厂生产这种产品的总固定成本为7000元(固定成本是除材料和劳动费用以外的其他费用),为获得最大利润,工厂应对零售商每件收取多少元?并求此时的最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)当=-1时,求的单调区间及值域;

(2)若在()上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,判断的单调性,并用定义证明;

(2)若恒成立,求的取值范围;

(3)讨论的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的单调减区间是

(1)求的解析式;

(2)若对任意的,关于的不等式

时有解,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,则实数a的取值范围是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的长轴长为4,焦距为.

Ⅰ)求椭圆C的方程;

Ⅱ)过动点M0m)(m>0)的直线交x轴与点N,交C于点APP在第一象限),且M是线段PN的中点,过点Px轴的垂线交C于另一点Q,延长线QMC于点B.

i)设直线PMQM的斜率分别为k,证明为定值.

ii)求直线AB的斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,且 的最小值为t.
(1)求实数t的值;
(2)解关于x的不等式:|2x+1|+|2x﹣1|<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

同步练习册答案