精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中, ,若利用下面程序框图计算该数列的第2016项,则判断框内的条件是(

A.n≤2014
B.n≤2016
C.n≤2015
D.n≤2017

【答案】B
【解析】解:通过分析,本程序框图为“当型“循环结构,
判断框内为满足循环的条件,
第1次循环,A= ,n=1+1=2,
第2次循环,A= = ,n=2+1=3,

当执行第2016项时,n=2017,由题意,此时,应该不满足条件,退出循环,输出A的值.
所以,判断框内的条件应为:n≤2016.
故选:B.
【考点精析】关于本题考查的程序框图,需要了解程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)已知圆的圆心是直线轴的交点,且与直线相切,求圆的标准方程;

(2)已知圆,直线过点与圆相交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知圆的圆心在直线上,且过点与直线相切.

)求圆的方程

)设直线与圆相交于两点.求实数的取值范围.

的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆及直线直线被圆截得的弦长为

)求实数的值.

)求过点并与圆相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①残差可用来判断模型拟合的效果;

②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;

③线性回归方程必过

④在一个2×2列联表中,由计算得=13.079,则有99%的把握确认这两个变量间有关系(其中);

其中错误的个数是(

A. 0 B. 1 C. 2 D. 3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点M(1,0)和直线x=﹣1上的动点N(﹣1,t),线段MN的垂直平分线交直线y=t于点R,设点R的轨迹为曲线E.
(1)求曲线E的方程;
(2)直线y=kx+b(k≠0)交x轴于点C,交曲线E于不同的两点A,B,点B关于x轴的对称点为点P.点C关于y轴的对称点为Q,求证:A,P,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列命题中:
①存在一个平面与正方体的12条棱所成的角都相等;
②存在一个平面与正方体的6个面所成较小的二面角都相等;
③存在一条直线与正方体的12条棱所成的角都相等;
④存在一条直线与正方体的6个面所成的角都相等.
其中真命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标中,设椭圆的左右两个焦点分别为,过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为.

(1)求椭圆的方程;

(2)已知经过点且斜率为,直线与椭圆有两个不同的交点,请问是否存在常数,使得向量共线?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案