精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是

【答案】
【解析】解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆; 又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.
设圆心C(4,0)到直线y=kx﹣2的距离为d,
则d= ≤2,即3k2﹣4k≤0,
∴0≤k≤
∴k的最大值是
故答案为:
由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x﹣a2x+1+a+1,a∈R.
(1)当a=1时,解方程f(x)﹣1=0;
(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;
(3)若函数f(x)有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非零向量 满足| |=1,且( )( + )=
(1)求| |;
(2)当 =- 时,求向量 +2 的夹角θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,M为PC中点.
(1)求证:BC∥平面PAD;
(2)求证:AP∥平面MBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】支篮球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.有下列四个命题:

:恰有四支球队并列第一名为不可能事件; :有可能出现恰有两支球队并列第一名;

:每支球队都既有胜又有败的概率为 :五支球队成绩并列第一名的概率为.

其中真命题是

A. ,, B. ,, C. .. D. ..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,其三视图和直观图如图所示,E为BC中点. (Ⅰ)求此几何体的体积;
(Ⅱ)求证:平面PAE⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)= sin(2x﹣ )+1的图象向左平移 个单位长度,再向下平移1个单位长度后,得到函数g(x)的图象,则函数g(x)具有的性质(填入所有正确的序号) ①最大值为 ,图象关于直线x= 对称;②在(﹣ ,0)上单调递增,且为偶函数;③最小正周期为π;④图象关于点( ,0)对称,⑤在(0, )上单调递增,且为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=sinx(x∈R)的图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),再把所得图象向左平行移动 个单位长度,得到的图象所表示的函数是(
A.y=sin( x+ ),x∈R
B.y=sin( x+ ),x∈R
C.y=sin(2x+ ),x∈R
D.y=sin(2x+ ),x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为6,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)过点作斜率为的直线与椭圆交于两点 ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案