精英家教网 > 高中数学 > 题目详情

【题目】已知中心在坐标原点的椭圆 的长轴的一个端点是抛物线 的焦点,且椭圆 的离心率是 .
(1)求椭圆 的方程;
(2)过点 的动直线与椭圆 相交于 两点.若线段 的中点的横坐标是 ,求直线 的方程.

【答案】
(1)解:由题知椭圆 的焦点在 轴上,且

,故

故椭圆 的方程为 ,即 .


(2)解:依题意,直线 的斜率存在,设直线 的方程为 ,将其代入

消去 ,整理得 .

两点坐标分别为 .

由线段 中点的横坐标是 ,得

解得 ,符合(*)式.

所以直线 的方程为 .


【解析】(1)由已知条件得到关于a,b,c的方程组求a,b,c得到椭圆方程。
(2)将直线方程代入到椭圆方程中,消去y得关于x的一元二次方程,由韦达定理得到两根之和就是弦中点的横坐标,从而 求出直线的斜率得到方程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知线段AB的端点A的坐标为,端点B是圆: 上的动点.

(1)求过A点且与圆相交时的弦长为的直线的方程。

(2)求线段AB中点M的轨迹方程,并说明它是什么图形。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱底面为等边三角形 .

求三棱锥的体积

在线段上寻找一点使得请说明作法和理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在区间上的值域.

(1)求的值;

(2)若不等式上恒成立,求实数的取值范围;

(3)若函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司一年需购买某种原料600吨,设公司每次都购买每次运费为3万元,一年的总存储费为万元一年的总运费与总存储费之和为(单位:万元)

1)试用解析式得表示成的函数

2)当为何值时 取得最小值并求出的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,

(1)求图中 的值并根据频率分布直方图估计这500名志愿者中年龄在 岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为 ,求 的分布列及均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c,已知2c﹣a=2bcosA.
(1)求角B的大小;
(2)若 ,求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,且的中点,上,且.

1)求证:平面平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用“斜二测”画法画出△ABC(A为坐标原点,AB在x轴上)的直观图为△A′B′C′,则△A′B′C′的面积与△ABC的面积的比为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案