精英家教网 > 高中数学 > 题目详情

设函数y=f(x),且lg(lgy)=lg3x+lg(3-x).

(1)求f(x)的表达式及定义域;

(2)求f(x)的值域.

(1)定义域为(0,3).

(2) y=f(x)的值域为(1,].


解析:

(1)∵lg(lgy)=lg(3x)+lg(3-x),

    又∵lg(lgy)=lg(3x)+lg(3-x),

∴lg(lgy)=lg[3x(3-x)],lgy=3x(3-x),

∴y=103x(3-x),其中0<x<3,即定义域为(0,3).

(2)令u=3x(3-x),

    则u=-3(x-)2+(0<x<3),∴0<-3x2+9x≤,

∴1<y≤.∴y=f(x)的值域为(1,].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)=
2x
2x+
2
上两点p1(x1,y1),p2(x2,y2),若
op
=
1
2
(
op1
+
op2
)
,且P点的横坐标为
1
2

(1)求P点的纵坐标;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)
,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n项和,若Tn<a(Sn+2+
2
)
对一切n∈N*都成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在R上连续,则f(x)在R上为递增函数是f′(x)>0的…(    )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是一次函数,若f(1)=-1,且f′(2)=-4,则f(x)的解析式为_________.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二下学期第一次统练理科数学试卷(解析版) 题型:选择题

设函数y=f(x)的图象如图所示,则导函数y=f ¢(x)可能为(    )

 

 

查看答案和解析>>

同步练习册答案