精英家教网 > 高中数学 > 题目详情

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,直线的极坐标方程为,曲线的参数方程为为参数).

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

(Ⅱ)求曲线上的动点到直线距离的最大值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)化简直线的极坐标方程为,代入互化公式,即可求得直线的直角坐标方程,由曲线的参数方程,消去参数,即可求得得曲线的普通方程;

(Ⅱ)设点的坐标为,利用点到直线的距离公式,结合三角函数的性质,即可求解.

(Ⅰ)由直线的极坐标方程为,可得

代入上式,可得直线的直角坐标方程为

由曲线的参数方程为参数),可得为参数),

平方相加,可得曲线的普通方程为.

(Ⅱ)设点的坐标为

则点到直线的距离为(其中.

时,取最大值,且的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率是P为椭圆上的动点.取最大值时,的面积是

1)求椭圆的方程:

2)若动直线l与椭圆E交于AB两点,且恒有,是否存在一个以原点O为圆心的定圆C,使得动直线l始终与定圆C相切?若存在,求圆C的方程,若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿波罗尼斯(约公元前年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点间的距离为,动点满足,则的最小值为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

1)若某位顾客消费128元,求返券金额不低于30元的概率;

2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个同样的红球、两个同样的黑球和两个同样的白球放入下列6个格中,要求同种颜色的球不相邻,则可能的放球方法共有______.(用数字作答)

1

2

3

4

5

6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)若,解不等式

(Ⅱ)当时,函数的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位在2019年重阳节组织50名退休职工(男、女各25名)旅游,退休职工可以选择到甲、乙两个景点其中一个去旅游.他们最终选择的景点的结果如下表:

男性

女性

甲景点

20

10

乙景点

5

15

1)据此资料分析,是否有的把握认为选择哪个景点与性别有关?

2)按照游览不同景点用分层抽样的方法,在女职工中选取5人,再从这5人中随机抽取2人进行采访,求这2人游览的景点不同的概率.

附:,.

P

0.010

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体ABCDEF中,四边形ABFE为正方形,GAB的中点,.

1)求证:平面CDEF

2)求平面ACD与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,为等边三角形,四边形为矩形,的中点,.

证明:平面平面.

设二面角的大小为,求的取值范围.

查看答案和解析>>

同步练习册答案