精英家教网 > 高中数学 > 题目详情
若数列{an}的前n项和Sn满足:Sn=2an+1(n∈N*).
(1)求数列{an}的前三项和a1,a2,a3
(2)求{an-1}的通项公式,并求出an的通项公式.
考点:数列递推式,数列的概念及简单表示法
专题:等差数列与等比数列
分析:(1)直接由数列递推式求得数列{an}的前三项a1,a2,a3
(2)由Sn=2an+1,得Sn-1=2an-1+1(n≥2),作差后可得数列{an}构成以-1为首项,以2为公比的等比数列,求得其通项公式后可得{an-1}的通项公式.
解答: 解:(1)由Sn=2an+1,取n=1得,S1=2a1+1,∴a1=-1.
取n=2得,S2=a1+a2=2a2+1,∴a2=a1-1=-1-1=-2.
取n=3得,S3=a1+a2+a3=2a3+1,∴a3=a1+a2-1=-4;
(2)由Sn=2an+1,得Sn-1=2an-1+1(n≥2),
两式作差得:an=2an-2an-1,即an=2an-1(n≥2),
∴数列{an}构成以-1为首项,以2为公比的等比数列,
an=-1×2n-1
an-1=-1×(2n-1+1)
点评:本题考查了数列递推式,考查了等比关系的确定,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cosx,x∈(0,2π)有两个不同的零点x1,x2,且方程f(x)=m(m≠0)有两个不同的实根x3,x4,若把这四个数按从小到大排列构成等差数列,则实数m=(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
sin(α+nπ)+sin(α-nπ)
sin(α+nπ)cos(α-nπ)
(n∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为(  )
A、y2=
3
2
x
B、y2=3x
C、y2=
9
2
x
D、y2=9x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个单位向量
a
b
的夹角为30°,
c
=t
a
+
b
d
=
a
-t
b
.若
c
d
=0,则正实数t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,1)作圆x2+y2=1的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为零的数列{an}的前n项和为Sn,且满足Sn=a1(an-1)
(1)求数列{an}的通项公式;
(2)设数列{bn}满足anbn=log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过5万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型y=f(x)制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;
(Ⅱ)现有两个奖励函数模型:(1)y=
1
20
x+1;(2)y=log2x-2.试分析这两个函数模型是否符合公司要求.

查看答案和解析>>

科目:高中数学 来源: 题型:

在不等式组
0≤x≤2
0≤y≤2
,所表示的平面区域内任取一点P,若点P的坐标(x,y)满足y≥kx的概率为
3
4
,则实数k=(  )
A、4
B、2
C、
2
3
D、
1
2

查看答案和解析>>

同步练习册答案