精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知椭圆E经过点,对称轴为坐标轴,焦点x轴上,离心率e.直线l的平分线,则椭圆E的方程是_____l所在的直线方程是_____

【答案】

【解析】

第一空:设出椭圆方程,根据椭圆E经过点,离心率,建立方程组,求得几何量,即可得到椭圆E的方程;

第二空:求得AF1方程、AF2方程,利用角平分线性质,即可求得∠F1AF2的平分线所在直线l的方程.

解:第一空:设椭圆方程为,(ab0

∵椭圆E经过点,离心率e

e1

a216b212

∴椭圆方程E为:

第二空:由椭圆方程可得

AF1方程为:AF2方程为:x2

设角平分线上任意一点为Pxy),则

∵斜率为正,

∴直线方程为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前项和为__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记数列的前n项和为,已知.

1)求数列的通项公式;

2)设,记数列的前n项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知等边的边长为3,点分别是边上的点,且.如图2,将沿折起到的位置.

1)求证:平面平面

2)给出三个条件:①;②二面角大小为;③.在这三个条件中任选一个,补充在下面问题的条件中,并作答:在线段上是否存在一点,使直线与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由.注:如果多个条件分别解答,按第一个解答给分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线ya分别与直线,曲线交于点AB,则线段AB长度的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x|+|x1|

1)若fx≥|m1|恒成立,求实数m的最大值M

2)在(1)成立的条件下,正实数ab满足a2+b2M,证明:a+b≥2ab

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC边长为3,点MN分别是ABAC边上的点,ANBM1,如图1所示.将△AMN沿MN折起到△PMN的位置,使线段PC长为,连接PB,如图2所示.

(Ⅰ)求证:平面PMN⊥平面BCNM

(Ⅱ)若点D在线段BC上,且BD2DC,求二面角MPDC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱,底面为等腰梯形,,侧面底面.

1)在侧面中能否作一条直线使其与平行?如果能,请写出作图过程并给出证明;如果不能,请说明理由;

2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最小值

(Ⅲ)若, 求使方程有唯一解的的值

查看答案和解析>>

同步练习册答案