精英家教网 > 高中数学 > 题目详情
17.在三棱锥S-ABC中,已知AB=AC,O是BC的中点,平面SAO⊥平面ABC,求证:∠SAB=∠SAC.

分析 由已知条件推导出△SAB≌△SAC,由此能证明∠SAB=∠SAC.

解答 证明:∵AB=AC,O是BC的中点,
∴AO⊥BC,
又∵平面SAO⊥平面ABC
∴BC⊥平面SAO,
∵O是BC中点,∴SB=SC,
又SA=SA,AC=AB,
∴△SAB≌△SAC,
∴∠SAB=∠SAC.

点评 本题考查空间中两角相等的证明,是基础题,解题时要认真审题,注意三角形全等的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列函数中能用二分法求零点的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式-2x2+x+1<0的解集是(  )
A.(-$\frac{1}{2}$,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-$\frac{1}{2}$)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}中,a1+a7=10,S9=63,则数列{an}的公差为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设n是不小于2的正整数,求证:$\frac{4}{7}$<1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$<$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一个有盖的正方体铸铁箱,每条外棱的长为26厘米,壁厚为0.15厘米,已知铸铁的比重为7.2克/立方厘米,求铁箱的重量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx,g(x)=xe-x
(Ⅰ)求关于x的不等式f(x)>0的解集;
(Ⅱ)对任意x1∈[1,3],x2∈[0,$\frac{π}{2}$],不等式g(x1)+a+3>f(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足$\frac{a_1}{9}+\frac{a_2}{7}+\frac{a_3}{5}+…+\frac{a_n}{11-2n}$=n
(1)求数列{an}的通项公式;   
(2)求数列{|an|}前n项和Tn

查看答案和解析>>

同步练习册答案