精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为 (α为参数),直线l的参数方程为 (t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2 ,θ),其中θ∈( ,π)
(Ⅰ)求θ的值;
(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.

【答案】解:(Ⅰ)曲线C的参数方程为 (α为参数),普通方程为x2+(y﹣2)2=4,极坐标方程为ρ=4sinθ,
∵点A的极坐标为(2 ,θ),θ∈( ,π),∴θ=
(Ⅱ)直线l的参数方程为 (t为参数),普通方程为x+ y﹣4 =0,
点A的直角坐标为(﹣ ,3),射线OA的方程为y=﹣ x,
代入x+ y﹣4 =0,可得B(﹣2 ,6),∴|AB|= =2
【解析】(Ⅰ)曲线C的极坐标方程,利用点A的极坐标为(2 ,θ),θ∈( ,π),即可求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求出A,B的坐标,即可求|AB|的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x>0时,f(x)= x3+ax(a∈R),且曲线f(x)在x= 处的切线与直线y=﹣ x﹣1平行.
(Ⅰ)求a的值及函数f(x)的解析式;
(Ⅱ)若函数y=f(x)﹣m在区间[﹣3, ]上有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0,a≠1)的反函数的图象经过点( ).若函数g(x)的定义域为R,当x∈[﹣2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是(
A.g(π)<g(3)<g(
B.g(π)<g( )<g(3)??
C.g( )<g(3)<g(π)
D.g( )<g(π)<g(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.

(Ⅰ)若G为AD边上一点,DG= DA,求证:EG∥平面BCF;
(Ⅱ)求二面角E﹣BF﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线 的右支上的一点P作一直线l与两渐近线交于A、B两点,其中P是AB的中点;
(1)求双曲线的渐近线方程;
(2)当P坐标为(x0 , 2)时,求直线l的方程;
(3)求证:|OA||OB|是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 若Sm1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若数列{bn}满足 =logabn(n∈N*),求数列{(an+6)bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

同步练习册答案