分析 (1)由题意利用两角和差的三角公式,化简函数的解析式,再利用正弦函数的单调性,得出结论.
(2)由题意利用y=Asin(ωx+φ)的图象变换规律求得f′(x)=2cosx-1,再根据函数零点的定义和求法求得f′(x)的零点.
解答 解:(1)f(x)=2cos(x+$\frac{π}{3}$-α)cosα-2sinαsin(x+$\frac{π}{3}$-α)=2cos(x+$\frac{π}{3}$),
令 $2kπ-π≤x+\frac{π}{3}≤2kπ$,求得2kπ-$\frac{4π}{3}$≤x≤2kπ-$\frac{π}{3}$,
则f(x)的单调增区间$[{2kπ-\frac{4π}{3},2kπ-\frac{π}{3}}],k∈Z$.
(2)F′的解析式是y=f′(x)=2cosx-1,令2cosx-1=0,
求得f′(x)的零点为$x=2kπ±\frac{π}{3},k∈Z$.
点评 本题主要考查两角和差的三角公式,正弦函数的单调性,y=Asin(ωx+φ)的图象变换规律,函数零点的定义和求法,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,2) | B. | ($\frac{1}{2}$,1) | C. | (1,$\sqrt{2}$) | D. | (0,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com